
DeviceNet user guide

PC
30

00

ENG

PC3000 DeviceNet user guide HA027903 issue 1 i

1. Scope .1

2. Related Documents .1

3. Overview .1

3.1 Hardware .1

3.1.1 Version compatibility .1

3.1.2 Description .1

3.1.3 Module Identification .2

3.1.4 Connections .2

3.1.4.1 Configuration port .2

3.1.4.2 DeviceNet port .3

3.1.5 Configuration options .3

3.1.6 Location .3

3.1.7 Specification .3

3.1.7.1 Technical Data .3

3.1.8 Connectors and Cables .4

3.1.8.1 Configuration and Diagnostics .4

3.1.8.2 DeviceNet .4

3.1.9 Diagnostics .4

3.2 PC3000 Software Support .5

3.2.1 Hardware requirement .5

3.2.2 Deliverables .6

3.2.2.1 PS Tools .6

3.2.3 Library Contents .8

3.2.4 Functional Outline .9

3.2.5 Known bugs and limitations .10

3.3 DeviceNet Slave Configuration .10

3.3.1 Configuration by SyCon .10

3.3.2 Configuration by PC3000 .11

4. Function Block Summary .12

5. Cyclic Data Exchange .14

5.1 Introduction .14

5.2 Master Configuration .14

5.3 PC3000 Configuration .14

5.3.1 Compulsory function blocks .14

CONTENTS

5.3.1.1 COM_Table .15

5.3.1.2 DevNet_S .15

5.3.1.3 COS_Vars .18

5.3.2 Optional Function Blocks .19

5.3.2.1 COM_Inf .19

5.4 Example Configuration .20

6. Glossary of Terms and References .24

6.1 PC3000 terms .24

6.2 DeviceNet terms .25

6.3 References .26

6.3.1 Reference 1 .26

6.3.2 Reference 2 .26

6.3.3 Reference 3 .26

6.3.4 Reference 4 .26

6.3.5 Reference 5 .26

LIST OF TABLES

Table 3-1: Configuration port connections .2

Table 3-2: DeviceNet port connections .3

Table 3-3: Diagnostic LED’s .5

Table 3-4: LED non-conformance details .5

Table 3-5: PS downloadable library files .6

Table 3-6: List of PS function block file names .7

Table 3-7: Compulsory DNS configuration parameters 10

Table 4-1: Summary of function blocks in the library 12

Table 5-1: DevNet_S ErrAction parameter values .16

Table 5-2: COS_Var variable types .18

Table 5-3: Example memory map .21

Table 5-4: Example function block list .21

LIST OF FIGURES

Figure 3-1: Module layout .2

Figure 3-2: Module location .3

Figure 3-3: Configuration/Diagnostic cable .4

Figure 3-4: Software architecture .9

Figure 5-1: COM_Table function block .15

ii PC3000 DeviceNet user guide

Figure 5-2: DevNet_S function block .17

Figure 5-3: COS_Dint function block .19

Figure 5-4: COS_Dint_8 function block .19

Figure 5-5: COM_Inf function block .20

Figure 5-6: Example function block wiring .22

Figure 5-7: DevNet_S configuration .23

Figure 5-8: SFC initialisation sequence .23

PC3000 DeviceNet user guide iii

iv PC3000 DeviceNet user guide

PC3000 DeviceNet user guide 1

1. SCOPE

This document describes the implementation of a DeviceNet slave on a PC3000. It
contains installation instructions for the hardware and software and outlines the
necessary configuration details for the module. It contains sections describing the
different modes of operation supported by the function block library and provides
some example program fragments.
Details of the function blocks can be found in Related Documents [1].
The library containing these function blocks also contains other network related
function blocks for Profibus DP Master operation. Use of those blocks can be found
in Related Documents [2].

2. RELATED DOCUMENTS

Title Document
Number

[1] Fieldbus on PC3000,

Function block reference HA027900

[2] Profibus on PC3000, user guide HA027902

3. OVERVIEW

3.1 Hardware

3.1.1 Version compatibility

The module is Version 3 but may be used in existing Version 2 and Version 1 racks.
It is designed to be used with the LCM-PLUS and firmware version 3.20 or higher.

It is not possible to use the library with earlier versions of the
firmware or with a simple LCM.

3.1.2 Description

The PC3000 DeviceNet Slave module provides one isolated communications
channel. It can be used in any of the first five slots in a PC3000 main rack. More
than one module can be mounted in the rack and the only limitation is that they must
be mounted to the right (higher slot address) of any ICM, or other Lbus, modules.
The module comprises a motherboard, which carries a plug-on COM-DNS
DeviceNet module from Hilscher GmbH (see Reference 1, paragraph 6.3.1 on
page 27). The motherboard provides: -
· physical mounting for the module, connectors and diagnostic LED’s
· power supply
· Lbus interface to the DPM module's dual port memory.

Figure 3-1: Module layout

3.1.3 Module Identification

A label fitted to the side of the module carries details of the serial number etc.
The product code is included and should read:-
PC3000/COMM/VERSION3/DEVICENET/SLAVE

3.1.4 Connections

User connection to the module is via two connectors at the front of the module.
A 9 way, D-type for configuration and diagnostics and a 5 way CombiCon
connector for the DeviceNet network.

3.1.4.1 Configuration port

The top connector is a male and is an unisolated RS232 configuration port. It is for
connection to a computer running the Hilscher SyCon configuration software for
download and diagnostics.

Table 3-1: Configuration port connections

Pin No Function
2 Tx
3 Rx
5 Common

2 PC3000 DeviceNet user guide

ISO 11898 DeviceNet
port for device level
communication at
selectable baud rates

RS232 port to
download configuration
and for diagnostics

Diagnostic LEDs
for function and
comms activity

Standard ICM header

Plug-on
comms
module

Carrier card Lbus interface logic,
memory mapping, connectors and LED
diagnostics. Accepts standard ICM
side covers

Hilscher
COM-DNS

module

Bus interface logic
and power

LB
us

 In
te

rf
ac

e
to

P
C

30
00

 b
ac

kp
la

ne

3.1.4.2 DeviceNet port

The bottom connector is a 5 way CombiCon connector and is the isolated ISO 11898
DeviceNet port. The actual network connection to remote instruments is via
standard DeviceNet cable, which contains both the signal and the power.

Table 3-2: DeviceNet port connections

3.1.5 Configuration options

There is no hardware configuration necessary on this module. There are jumpers on
the mother board for setting interrupt levels and test features but the module is
shipped with the necessary jumpers fitted and these should not be altered.

3.1.6 Location

The module must be located in the main rack in one of the first five I/O positions.
It must also be fitted to the right of any standard COM/PORTS4 modules.

Figure 3-2 Module location

3.1.7 Specification

This module performs the function of a DeviceNet slave.

3.1.7.1 Technical Data
· DeviceNet Slave connection Potential-free ISO 11898 interface
· Transmission rates Max 500 Kbaud
· Configuration connection Potential-linked RS232 interface
· Host interface 510 byte dual port memory
· Consumed data 255 bytes
· Produced data 255 bytes
· Diagnostics LED’s and via RS232 port
· Operating temperature 0 - 55 degrees

PC3000 DeviceNet user guide 3

1
2
3
4
5

Pin No. Function

0V external power
CANL - data line low

Shield

CANH - data line high
24V external power

External termination
at last unit = 124‰

PSU LCM

Permitted positions for this module
Module must be fitted to the right of any ICM modules

1 2 3 4 5 6 7 8 9 10 11 12

3.1.8 Connectors and Cables

3.1.8.1 Configuration and Diagnostics

An RS232 9 way D-type to 9 way D-type cable is available for configuration and
diagnostics. The Hilscher part number is KAB-SRV. The cable is bundled with the
SyCon configuration software if bought from Eurotherm. The wiring details are
shown in Figure 3-3. The cable type is unimportant.

Figure 3-3: Configuration/Diagnostic cable

3.1.8.2 DeviceNet

The DeviceNet connection is via a five-way 5.08 pitch male CombiCon connector
mounted on the PCB. The cable, therefore, terminates in a matching female
connector. A wide variety of such connectors are available with screwless terminals,
spring leaf and rising clamp terminals. They are also available with strain relief
features and with cables entering at the side or at the rear. A typical simple
connector with screw clamp terminals would be the Weidmuller product, part
number BLZ 5.08/5.
The cables are specified by the Open DeviceNet Vendor Association (ODVA). A
suitable cable for trunk lines is Belden type 3082A and for drop lines is Belden type
3084A.

3.1.9 Diagnostics

There are four LEDS on the front of the module to provide information about the
module operations. These are shown in Table 3-3.
Note: With the current release of this module, the LED’s do not conform to the
DeviceNet standard and the differences are shown in Table 3-4.

4 PC3000 DeviceNet user guide

5
9

1
6

5
9

1
6

D9 female

from rear

D9 female

from rear

Table 3-3: Diagnostic LED’s

Label Colour Function

F Red NET See Table 3-4

R Green RUN On Communication running

Flashing non-cyclic Parameter error

Off Communication stopped

1 Green RDY On COM ready

Flashing cyclic Bootstrap loader active

Flashing non-cyclic Hardware or system error

Off Hardware error

0 Green MOD See Table 3-4

Table 3-4 LED non-conformance details

DeviceNet Specification PC3000 implementation
Function Colour State Explanation

NET Red On Critical link failure Red LED F On

Flashing Connection time out Red LED F flashing

Off Device not powered Red LED F Off

Green On On-line, link ok Red LED F Off

Flashing On-line, not connected Red LED F Off

Off Device not powered Red LED F Off

MOD Red On Unrecoverable fault Green LED 0 Off

Flashing Minor fault Green LED 0 Off

Off No power Green LED 0 Off

Green On Normal operation Green LED 0 On

Flashing Configuration failure Green LED 0 flashing

Off No power Green LED 0 Off

3.2 PC3000 Software Support

3.2.1 Hardware requirement

The software support for the DeviceNet module requires the installation of a 128K
RAM card in the second RAM slot of the LCM-PLUS. This is the rearmost position
behind the EPROM card.

IMPORTANT
The downloadable function blocks require a 128K RAM card

installed in the LCM-PLUS.

PC3000 DeviceNet user guide 5

3.2.2 Deliverables

For the DOS PS Tools, the PC3000 function blocks that support this module come in
the form of a downloadable function block library on a single 31/2" diskette. The
files supplied on the diskette must be copied to the relevant directories on the
computer running the DOS PC3000 programming software. The Windows version of
the tool WinPS already has the necessary FIELDBUS library to support this module.
For WinPS these blocks can also be found in the Xcomms library.

3.2.2.1 PS Tools

If downloadable libraries have not been used before, some initial setting up may be
needed as follows. In the following descriptions, <pc3000_home> represents the
directory into which the PS Tools were initially installed, usually C:\PC3000.
· Create a directory <pc3000_home>\tpl if it does not already exist.
· Edit the file <pc3000_home>\REL_DEF_ (which should already exist) to add the

line "tpl". The file should now contain:-

definiti

tpl

· Create a directory <pc3000_home>\user\standard and copy the existing files
XSYMBOLS.A and XSYMGNU.R into it from <pc3000_home>\user. New
versions of these files are included in the downloadable library and this procedure
is to provide a back up in case it is necessary to revert to a standard configuration.
The delivered files are as follows and the table defines which directories they must
be copied to.

Table 3-5: PS downloadable library files

File name Destination Description
XSYMBOLS.A <pc3000_home>\user Symbol table in ASCII form

FF**.H <pc3000_home>\user Individual header files for the function blocks.

Used during program build. There should be

26 of these files, see Table 3-6

HEADLIST.H <pc3000_home>\user List of function blocks in the downloadable

library. For information only.

FBLOCKS.LST <pc3000_home> Contains the version number of the library.

Used on download to check the compatibility of

any previously downloaded library.

FF**.MSG <pc3000_home>\parhelp

On-line help files for each function block.

There should be 26 of these files, see Table 3-6.

6 PC3000 DeviceNet user guide

File name Destination Description
FF**.O <pc3000_home>\tpl PS Tools template files for each function block.

There should be 26 of these files, see Table 3-6.

XSYMGNU.R <pc3000_home>\user Symbols table in pre-compiled form.

LCM_RT_R.RUN <pc3000_home> The downloadable run-time library. This is the

file that is downloaded to the PC3000.

For the *.msg, *.o and *.h file types, the filenames are:

Table 3-6 List of PS function block file names

File Name Type Name
FF78 Profi_DPM

FF79 COM_Inf

FF7B COM_Slv_Sta

FF7D DevNet_S

FF7F COM_Slv_Inf

FF83 COM_Table

FF84 COM_Dint

FF85 COM_Real

FF86 COM_Bool

FF87 COM_Str

FF89 COM_SW

FF8A COM_Dint_8

FF8B COM_Real_8

FF8C COM_Dint_D

FF8D COM_Real_D

FF8E COM_Bool_D

FF8F COM_SW_D

FF90 COM_Diag

FF97 COS_Dint

FF98 COS_Real

FF99 COS_Bool

FF9A COS_Str

FF9B COS_SW

FF9C COS_Dint_8

FF9D COS_Real_8

PC3000 DeviceNet user guide 7

3.2.3 Library Contents

The PC3000 software support for networks is designed to be functionally compatible
with the other supported communication protocols. It comprises driver function
blocks, a set of remote variable types (COM_Vars) and a set of slave variable types
(COS_Vars).
This document is limited to describing the DeviceNet slave support.
To use the DeviceNet DNS module, it is necessary to instantiate a DevNet_S driver
and as many COS_Vars of the relevant types as necessary for the application. These
variables can be set to Input, Output or Off. Provided a variable is not set to Off,
read and write transactions between these variables and the network are carried out
continuously at a rate determined by the driver task.
Because the software is a downloadable library, the hooks between these various
function blocks, normally in firmware, must be created by the programmer. This is
done by instantiating a COM_Table function block. Only one COM_Table is needed
and it requires no configuration or wiring. It has a few output parameters but these
are only for verification and diagnostics.
The DNS module provides, in its dual port memory, a set of information parameters.
Some of these are used by the DevNet_S (and other drivers) to confirm that the
correct module is fitted. Others may be necessary in the event of module failure and
subsequent diagnosis. The set of information parameters may be obtained by
instantiating a COM_Inf function block. This block obtains its data from the module
installed in the specified slot. The block is not required for communications but
does supply useful information if support should be required.

8 PC3000 DeviceNet user guide

PC3000 DeviceNet user guide 9

IN
TE

R
N

A
L

PC
30

00
EX

TE
R
N

A
L

H
ils

ch
er

C
O

M
-D

PM
D

ua
l P

o
rt

 R
A

M

C
O

M
_

V
ar

s
ca

n
b
e

co
nf

ig
ur

ed
 a

s
ei

th
er

 In
pu

ts
 o

r
O

ut
pu

ts
 o

r
th

ey

ca
n

b
e

tu
rn

ed
 o

ff
.

Th
ey

 r
ea

d
 a

nd
 w

ri
te

 d
at

a
fr

o
m

 a
nd

 t
o

sp
ec

if
ie

d
 a

re
as

 o
f

d
ua

l p
o
rt

 m
em

eo
ry

th
ro

ug
h

th
e

D
ev

N
et

_
S

d
ri

ve
r

an
d
 v

ia
th

e
C

O
M

_
Ta

b
le

 f
un

ct
io

n
b
lo

ck
.

Th
e

A
d
d
re

ss
 p

ar
am

et
er

 is
 d

yn
am

ic

an
d
 c

an
 b

e
ch

an
ge

d
 a

t
ru

n-
ti
m

e
to

re

ad
/w

ri
te

 t
o
 d

if
fe

re
nt

 m
em

o
ry

lo

ca
ti
o
ns

 in
 t

he
 s

am
e

d
ri

ve
r.

C
O

S_
V
ar

D
at

a

TY
PE

S
C

O
S_

D
in

t
C

O
S_

Re
al

C
O

S_
B
o
o
l

C
O

S_
St

r
C

O
S_

SW

C
O

M
_

V
ar

_
8

TY
PE

S
C

O
S_

D
in

t_
8

C
O

S_
Re

al
_

8

C
O

M
_

Ta
b
le

C
O

M
_

In
f

re
ce

iv
es

 d
at

a
fr

o
m

 t
he

 u
se

r
ar

ea
 o

f
th

e
d
ua

l p
o
rt

 R
A

M
th

ro
ug

h
th

e
Pr

o
fi
_

D
PM

d
ri

ve
r

an
d
 v

ia
 t

he
C

O
M

_
Ta

b
le

 f
un

ct
io

n
b
lo

ck

C
O

M
_

In
f

D
ev

N
et

_
S

D
ev

N
et

_
S

re
ad

s
th

e
Re

ce
iv

e
D

at
a

A
re

a,
 f

o
rm

at
s

th
e

d
at

a
an

d
w

ri
te

s
it
 t

o
 t

he
 a

pp
ro

pr
ia

te
C

O
S_

V
ar

s
co

nf
ig

ur
ed

 a
s

In
pu

ts

D
ev

N
et

_
S

re
ad

s
d
at

a
fr

o
m

 t
ho

se
C

O
S_

V
ar

s
co

nf
ig

ur
ed

 a
s

O
ut

pu
ts

, f
o
rm

at
s

it
 a

nd
 w

ri
te

s
it

to
 t

he
 S

en
d
 P

ro
ce

ss
 D

at
a

ar
ea

Pr
o
fi
_

D
PM

U
p

to
 f

iv
e

d
ri

ve
rs

 c
an

 b
e

su
pp

o
rt

ed
. M

o
re

 t
ha

n
o
ne

D
ev

N
et

_
S

d
ri

ve
r

ca
n

b
e

us
ed

 t
o

ha
nd

le
 h

ig
h

d
at

a
co

un
ts

.
O

th
er

 d
ri

ve
rs

 s
uc

h
as

 P
ro

fi
_

D
PM

ca
n

b
e

ad
d
ed

 f
o
r

o
th

er
 n

et
w

o
rk

s.

D
ev

N
et

_
S

D
ev

N
et

_
S

re
ad

s
th

e
m

o
d
ul

e
us

er
in

fo
rm

at
io

n
to

 v
er

if
y

th
e

ha
rd

w
ar

e
an

d
 m

ak
e

th
e

d
at

a
av

ai
la

b
le

 f
o
r

th
e

C
O

M
_

In
f

fu
nc

ti
o
n

b
lo

ck

D
ev

N
et

_
S

w
ri

te
s

co
nf

ig
ur

at
io

n
d
at

a
to

 t
he

 u
se

r
ta

sk
 in

fo
rm

at
io

n
to

 s
et

 u
p

ne
tw

o
rk

 p
ar

am
et

er
s

U
se

r
ar

ea

Re
ce

iv
e

Pr
o
ce

ss
D

at
a

Se
nd

Pr
o
ce

ss
D

at
a

U
se

r
ar

ea

Re
ce

iv
e

Pr
o
ce

ss
D

at
a

Se
nd

Pr
o
ce

ss
D

at
a

D
ev

ic
eN

et
 M

as
te

r
e.

g.
 S

C
A

D
A

PL
C

H
M

I e
tc

3.2.4 Functional Outline

Figure 3-4 System architecture

Once configured, the DNS module handles all of the network communications tasks.
It extracts data from the Send Process Data area and transmits them over the
network. It accepts data from the network master and places them into the Receive
Process Data Area.
The PC3000 COS_Var function blocks read and write to these same Process Data
areas. The memory access is controlled by a set of flags to ensure that data is
always consistent i.e. all bytes read or written at the same time.
The COS_Var blocks are all registered in a table at the appropriate DevNet_S driver.
The Address parameter in each COS_Var specifies which driver to use and where the
data is to be found in that driver (i.e. in dual port memory). At each execution of the
DevNet_S, the driver services all the COS_Vars that are registered with it.
For a COS_Var configured as an Input, it reads the dual port memory, using the
handshake flags to ensure consistency, interprets the data according to the specified
format and returns a value to the COS_Var. For a COS_Var configured as an Output,
it formats the value and writes it to the specified area of dual port memory. The
driver interprets the memory locations (as integer, real, string etc.) according to a
specification included in the COM variable address string.

3.2.5 Known bugs and limitations

This release of the DeviceNet driver does not support Explicit Messaging.
There are no known bugs.

3.3 DeviceNet Slave Configuration

The PC3000 function blocks require certain parameters in the DNS module to be
configured in a particular way. The module can be configured by two methods.

3.3.1 Configuration by SyCon

The DNS module can be configured using the Hilscher SyCon configuration tool.
This runs on a PC running Windows 95, 98, NT4, Me or 2000 and the configuration
is downloaded to the module over an RS232 link to the configuration and diagnostic
port of the module. The parameters that must be set are to be found under Slave
Device Settings and must be as in Table 3-7.

Table 3-7: Compulsory DNS configuration parameters

Parameter Value

Start up behaviour after system initialisation Controlled release of the communication by

the application program.

Handshake of the process data Buffered, device controlled.

Autobaud Tick if required.

10 PC3000 DeviceNet user guide

PC3000 DeviceNet user guide 11

Other parameters such as MAC ID, Description and the specification of the input
and output data areas (including Consumed size and Produced size) are all to be
found under Slave Device Configuration and should be set as required.

IMPORTANT
Configuration data downloaded by SyCon are loaded into flash memory on the DNS
module and become the cold start default values, i.e. on a power-up, these are the
values that will be used by the module.
Also if a Reset is performed on the DeviceNet_S funtion block, these are the values
that will be loaded into run-time memory.

3.3.2 Configuration by PC3000

The DevNet_S function block provides a means of configuring the DNS module
without the need to use SyCon although care needs to be taken in the user program
to protect the data in the event of a power cycle.

IMPORTANT
Configuration data in the PC3000 is stored in dual port RAM and loaded to the
run-time memory of the DNS module only when an Init is performed.
On a power up or Reset of the DNS module, the cold start values, if any have been
downloaded by SyCon, will be loaded into run-time memory. The PC3000 user
program must, therefore, detect the power up and trigger an Init in order to
re-instate the desired configuration.

The function block automatically sets up the required compulsory parameters
correctly. Other parameters can be set in the function block are
· MAC ID
· Baud rate
· Device name
· Produced size
· Consumed size
These parameters only take effect after a warm start is performed by triggering the
Init parameter of the DevNet_S driver. The Init copies the configuration data from
the volatile dual port RAM into the run-time memory of the DNS module. On a
power down, this data is lost and, on a subsequent power up, must be reinstated with
another Init.

12 PC3000 DeviceNet user guide

4. Function Block Summary

Table 4-1: Summary of function blocks in the library

Name ID Purpose

COM_Table FF7F Provides the system interface between any network comms

driver and all the other function blocks that use it. This

block is compulsory. It does not require configuration or

wiring. One block supports up to the maximum of five net

work modules.

Profi_DPM FF78 Profibus DP Master driver. Provides all interfaces to the

dual port memory of the DPM module. These include the

Process Data interface for all the COM_Var function blocks,

common system interface for the COM_Inf function block

and the message interface for the COM_Slv_Inf,

COM_Slv_Sta and COM_Diag function blocks.

One of these blocks must be instantiated for each DPM

hardware module present in the rack.

DevNet_S FF7D DeviceNet Slave driver. Provides all interfaces to the dual

port memory of the DNS module. These include the

Process Data interface for all the COS_Var function blocks

and the common system interface for the COM_Inf function

block.

One of these blocks must be instantiated for each DNS

hardware module present in the rack.

COM_Inf FF79 Provides information about any installed COM module. This

is useful if support should be required for the module as it

includes data such as software version numbers. This block

is optional and is not required for correct functioning of the

communications interface.

COM_Slv_Inf FF8F Extracts from any network master driver (e.g. Profi_DPM)

the configuration and on-line information for one network

slave at a time. The information is provided by the GSD file

for the slave device and by the network configurator. This

block is optional.

COM_Slv_Sta FF7B Extracts from any network master driver (e.g. Profi_DPM) a

summary of the on-line status information for 8 slave

devices. Whether the slave is configured, whether it is

communicating and whether there is any new diagnostic

information available. This block is optional but

recommended.

PC3000 DeviceNet user guide 13

Name ID Purpose

COM_Diag FF90 For any network master driver (e.g. Profi_DPM), provides

detailed slave diagnostic information for one slave device

on demand. Includes the standard slave diagnostics and the

Extended Diagnostic Data which is specific to each slave

device. This block is recommended.

COM_Dint FF83 Read /write one integer value

COM_Real FF84 Read /write one floating point value

COM_Bool FF85 Read /write one digital value

COM_Str FF86 Read /write string

COM_SW FF87 Read /write one status word

COM_Dint_8 FF89 Read /write up to 8 integer values

COM_Real_8 FF8A Read /write up to 8 floating point

values

COM_Dint_D FF8E Read /write one integer value

COM_Real_D FF8D Read /write one floating point value

COM_Bool_D FF8B Read /write one digital value

COM_SW_D FF8C Read /write one status word

COS_Dint FF97 Read /write one integer value

COS_Real FF98 Read /write one floating point value

COS_Bool FF99 Read /write one digital value

COS_Str FF9A Read/write a string

COS_SW FF9B Read /write one status word

COS_Dint_8 FF9C Read /write up to 8 integer values

COS_Real_8 FF9D Read /write up to 8 floating point

values

For use with network
master drivers.
These blocks read/write
data that are configured
in the cyclic data
exchange

For use with network
master drivers.
These blocks read/write
data that are configured
in the cyclic data
exchange

For use with network
master drivers.
These blocks read/write
data that is not
configured in the cyclic
data exchange

For use with network
slave drivers.
These blocks read/write
data that are configured
in the cyclic data
exchange

14 PC3000 DeviceNet user guide

5. Cyclic Data Exchange

5.1 Introduction

DeviceNet is a fast fieldbus network that provides a simple mechanism for
transferring blocks of memory between a master device and, up to, 63 slave devices.
DeviceNet is not concerned with the details of data type and format. Each slave can
‘consume’ up to 255 bytes of input data and ‘produce’ 255 bytes of output data. The
input and output data are transferred between the slave and the master on a cyclic
basis and at a rate determined by the network configuration.
The slave is responsible for the details of produced and consumed size, data types
and format. The master must know this information in order to correctly interpret
the data supplied by the slave and to correctly format the data supplied to the slave.

5.2 Master Configuration

The PC3000 acting as a slave will be connected to a master device, which may be a
SCADA system, a PLC, an HMI or some other DeviceNet master. That master will
need to be configured using whatever tools are appropriate.
Information about the PC3000 DeviceNet Slave is imported into the master
configuration tool in the form of an EDS file (electronic data sheet). The EDS file
supplied with the PC3000 treats the PC3000 as modular slave and allows the
network configurer to assign produced and consumed memory in blocks of 8 bytes,
up to a maximum of 248 bytes produced and 248 bytes consumed.

IMPORTANT
The produced and consumed sizes specified during the configuration of the master
must match the configuration of the slave. If this is not true, the master will report a
configuration error and communication cannot be established.
For this reason, the DevNet_S function block parameters, InSize and OutSize, must
be multiples of 8 (to conform with the EDS file).

5.3 PC3000 Configuration

5.3.1 Compulsory function blocks

A PC3000 program with any network capability must have one COM_Table block
instantiated to support the network drivers. One COM_Table will support up to the
maximum of five drivers allowed. Each DeviceNet Slave module (DNS) installed in
the rack requires a DevNet_S function block driver to support it.
With these two elements in place, communications can be established between a
network master and the PC3000 slave. COS_Vars are then required in order to
extract the data from the driver.

PC3000 DeviceNet user guide 15

5.3.1.1 COM_Table

One, and only one, COM_Table function block is required to provide system
support. Up to five network communications boards can be installed in a PC3000
rack and on COM_table will support all five. No configuration or user wiring is
required.

Figure 5-1: COM_Table function block

Slot_1_Dev S1D No_Dev (0)
Dev_1_No S1N 0
Dev_1_Err S1E 0
Slot_2_Dev S2D No_Dev (0)
Dev_2_No S2N 0
Dev_2_Err S2E 0
Slot_3_Dev S3D No_Dev (0)
Dev_3_No S3N 0
Dev_3_Err S3E 0
Slot_4_Dev S4D No_Dev (0)
Dev_4_No S4N 0
Dev_4_Err S4E 0
Slot_5_Dev S5D No_Dev (0)
Dev_5_No S5N 0
Dev_5_Err S5E 0

5.3.1.2 DevNet_S

One DevNet_S function block is required for each DNS module installed in the rack
(up to five maximum).
· Assign the driver to an appropriate task. Execution time of the driver increases

with increasing numbers of slave variables registered with the driver. Whilst it is
possible to service a few variables with the driver on a 10ms task, it is likely that,
for systems of reasonable size, a slower task will be required.

· Set {Slot_No} to correspond to the position of the DNS module in the rack.
· Set {ErrAction} to the required value depending on how the system is to behave in

the event of a comms failure.

16 PC3000 DeviceNet user guide

Table 5-1: DevNet_S ErrAction parameter values

Value Enumeration Action
0 None No action is taken by the driver. Input COS_Vars

retain their last known values during the comms

failure and are updated as soon as comms is

re-established.

The user program can detect comms failure from

the COMActive flag and take specific action, if

required.

1 RstDur Reset for the duration.

As soon as the block detects comms failure

(COMActive = Off), it sets all input values to 0 and

{RunState} to Off. This will set any outputs and

other parameters that are wired to the input

COS_Vars to 0 or Off.

As soon as comms is re-established, {RunState} is

set to Run, the input values are updated by the net

work and control resumes normally.

2 RstWait Reset and wait for program.

As soon as the block detects comms failure

(COMActive = Off), it sets all input values to 0 and

{RunState} to Off. This will set any outputs and

other parameters that are wired to the input

COS_Vars to 0 or Off.

This state is retained when comms is re-established.

The user program must set {RunState} to Run

before the input values are updated and control

resumed.

· If the DNS module has been configured through the serial configuration and
diagnostic port, it is not necessary to assign values to {MAC_ID}, {DevName},
{Baud}, {InSize} or {OutSize}. The DNS module will operate according to the
cold start values. The cold start values will be copied from the flash memory of
the DNS module into the DevNet_S function block if the driver is {Reset}.

· If the DNS module has not been configured through the serial configuration and
diagnostic port, the following values must be assigned. Before they take effect,
they must be transferred to the run-time memory of the DNS module by
performing an {Init}. This would normally be executed in an SFC step at the
beginning of the program but also needs to be done again on any power-up.

· Set {MAC_ID} to be the slave address
· Set {DevName} (optional)
· Set {Baud}
· Set {InSize}. This is the size, in bytes, of the Consumed Data and must

match the value specified in the configuration of the network master. If
the standard EDS file (PC3KDNS.EDS) is used, the value must be a
multiple of eight.

· Set {OutSize}. This is the size, in bytes, of the Produced Data and must
match the value specified in the configuration of the network master. If
the standard EDS file (PC3KDNS.EDS) is used, the value must be a
multiple of eight.

· The two timeout values, {Time_Out} and {ResetTmOut} should be changed to
reflect the task to which the driver has been assigned. i.e. if a slower task than the
default is used, the timeouts should be increased proportionately.

· If the DNS module has been configured through the serial configuration and
diagnostic port, arrange the SFC to trigger {Reset} during startup. This is not
strictly necessary because the DNS module will start working with its
pre-configured setup but this setup will not be reflected in the values of
{MAC_ID} etc. until a {Reset} is performed.

· If the DNS module has not been configured through the serial configuration and
diagnostic port, the SFC must be set up to trigger an {Init} during startup. This is
necessary to transfer the configuration to run-time memory.

· Under normal circumstances, {RunState} should be set to Run. It will
automatically go to Off if comms fails and {ErrAction} has been specified. Also,
the user or the program can turn it off. This does not stop the network comms
(i.e. there will be no message at the master) but it does prevent the driver from
updating the COS_Vars and, therefore, allows ‘off-line’ testing.

Figure 5-2: DevNet_S function block

Slot_No SLT 1 RCS_Err RCE 0
ErrAction EA RstDur (1) Segments SEG 0
Time_Out TO 100ms Err_No ERR 0
ResetTmOut RTO 1s Status ST NOGO (0)
MAC_ID MID 1 (INPUT / OUTPUT)
DevName NAM 'EUROTHERM PC3000__' (INPUT / OUTPUT)
Baud B 125 (2) (INPUT / OUTPUT)
InSize ISZ 24 (INPUT / OUTPUT)
OutSize OSZ 24 (INPUT / OUTPUT)
Reset RST Off (0) (INPUT / OUTPUT)
Init INI Off (0) (INPUT / OUTPUT)
RunState RS Run (1) (INPUT / OUTPUT)

COMReady CRY Off (0)
COMRun RUN Off (0)
COMActive ACT Off (0)

PC3000 DeviceNet user guide 17

18 PC3000 DeviceNet user guide

5.3.1.3 COS_Vars

COS_Vars are function blocks, which read and write the data from the DevNet_S
driver. There are a number of function blocks of different data types. The collection
of instantiated blocks effectively defines the memory format of the slave because
each COS_Var is associated with a particular area of the DeviceNet memory.
Each COS_Var can be registered as an Input, in which case it reads data from the
DeviceNet Consumed memory area, or as an Output, in which case it writes data to
the DeviceNet Produced memory area. The location and size of the associated
memory area is specified in the COS_Var {Address} parameter.

Table 5-2: COS_Var variable types

Block type Parameter Max value Min value DeviceNet memory
type usage (bytes)

COS_Dint INTEGER 2147483646 -2147483647 1, 2 or 4

COS_Real REAL 3.40282E+38 -3.40282E+38 1, 2, 4 or 8

COS_Bool BOOL 1 (On) 0 (Off) 1 bit

COS_Str STRING ≤ 255

COS_SW 16 off BOOL 1 (On) 0(Off) 1 or 2

Value_0 to

Value_15 65535 0

1 off INTEGER

Value

COS_Dint_8 ≤ 8 off INTEGER 2147483646 -2147483647 ≤ 8 x (1, 2 or 4)

COS_Real_8 ≤ 8 off REAL 3.40282E+38 -3.40282E+38 ≤ 8 x (1, 2, 4 or 8)

The {Address} parameter must be configured to read/write the correct number of
bytes from the appropriate driver at the correct memory offset. For details of the
syntax of the {Address} parameter, see the Function Block Reference.
The {Mode} parameter must be set as either Input (Consumed) or Output
(Produced). It can also be set to Off which prevents the driver from updating this
block or being updated by it.
If {Mode} is Output, {Value} can be wired or written to by the SFC. If {Mode} is
Input, {Value} is effectively Read Only. If {Mode} is Off, {Value} can be written
which is useful for forcing values during commissioning and for testing purposes.
Figure 5-3 shows a COS_Dint configured to write two bytes at offset 0
to the DNS module in slot 2.

PC3000 DeviceNet user guide 19

Figure 5-3: COS_Dint function block

Address A '2:0:2__________' Status S Go (1)
Mode M Output (2) Error_No ERR 0
Value VAL 32 (INPUT / OUTPUT)
Refreshed R No (0) (INPUT / OUTPUT)

The COS_Dint_8 and COS_Real_8 function blocks each provide up to eight values,
with identical specification and format, taken from consecutive memory locations.
The {NoOfVars} parameter can limit the number of parameters written or read to
less than eight. This enables the block to be used up to the memory limits without
causing memory overrun errors.
Figure 5-4 shows a COS_Dint_8 configured to read 6 values from the DNS module
installed in slot 2. All 6 values are one byte long and the first is at offset 10. The
second is at offset 11, the third at offset 12 etc.

Figure 5-4: COS_Dint_8 function block

Address A '2:10:1__________' Status ST Go (1)
Mode M Input (1) Error_No ERR 0
NoOfVars NOV 6
Value_1 V1 0 (INPUT / OUTPUT)
Value_2 V2 0 (INPUT / OUTPUT)
Value_3 V3 0 (INPUT / OUTPUT)
Value_4 V4 0 (INPUT / OUTPUT)
Value_5 V5 0 (INPUT / OUTPUT)
Value_6 V6 0 (INPUT / OUTPUT)
Value_7 V7 0 (INPUT / OUTPUT)
Value_8 V8 0 (INPUT / OUTPUT)
Refreshed R No (0) (INPUT / OUTPUT)

5.3.2 Optional Function Blocks

5.3.2.1 COM_Inf

This block provides information about the DNS master module itself. It provides
confirmation that the module is the correct module, that its firmware and operating
system are current and that it has been correctly configured.

20 PC3000 DeviceNet user guide

Figure 5-5: COM_Inf function block

Slot_No SLT 2 Dev_Date DD '01-12-2000__'

Dev_Number DN 15005200

Dev_Serial DS 1319

Firm_Name FN 'DNS COM-DNS __'

Firm_Ver FV 'V01.033 20.12.00__'

RCS_Ver RV 1.441

Dev_Adrs DA 0

Drv_Type DRT 34

DPM_Size MEM 2

Dev_Type DT 53

Dev_Model DM 75

Dev_ID ID 'COM______'

Err_No ERR 0

Status ST GO (1)

5.4 Example Configuration

An 8 loop controller is to communicate, as a DeviceNet slave, with a host device
which will send :-
· active setpoints
· high alarm limits
· low alarm limits
· auto/manual flag for each loop (in the form of a status word)
· output power when in Manual
and receive :-
· process value
· actual output power
· alarm status word
Input and output memory is declared in blocks of 8 bytes as specified by the
Electronic Data Sheet supplied with the module. The values can be passed in a
number of different formats but, for the example, all real numbers will be passed as
16 bit (2 byte) integers which have been scaled by a factor of ten in order to provide
one decimal place. The DeviceNet memory map might, therefore, be as shown in
Table 5-3.

PC3000 DeviceNet user guide 21

Table 5-3: Example memory map
Consumed Produced

Offset Value Offset Value
0 SP 1 0 PV 1
2 SP 2 2 PV 2
...
14 SP 8 14 PV 8
16 OP1 16 OP 1
18 OP2 18 OP 2
...
30 OP 8 30 OP 8
32 AL Hi 1 32 Alm SW
34 AL Hi 2 34 Not used
36 AL Hi 3 36 Not used
38 AL Hi 4 38 Not used
... ...
46 AL Hi 8
48 AL Lo 1
50 AL Lo 2
... ...
62 AL Lo 8
64 AutoMan SW
66 Not used
68 Not used
70 Not used

Table 5-4 lists the comms related function blocks that would be necessary to
implement this scheme.

Table 5-4: Example function block list

Type Name (say) Configuration Description
COM_Table Table No config Network resource
DevNet_S DNS Slot number (1 say) DeviceNet slave driver
COS_Real_8 SP Input 1:0:2E1 8 off setpoints
COS_Real_8 PV Output 1:0:2E1 8 off process values
COS_Real_8 OP_Out Output 1:16:2E1 8 off actual outputs
COS_Real_8 OP_In Input 1:16:2E1 8 off manual outputs
COS_Real_8 ALH Input 1:32:2E1 8 off alarm limit hi
COS_Real_8 ALL Input 1:48:2E1 8 off alarm limit lo
COS_SW AM Input 1:64:1 8 off auto/manual flags
COS_SW AL Output 1:32:2 8 off high alarm flags

8 off low alarm flags

Blocks
1 & 2

Blocks
3 & 4

Block
5

Block
9

Blocks
7 & 8

Block 6

22 PC3000 DeviceNet user guide

Figure 5-6: Example function block wiring

(* Make PID input connections. Output wiring depends on Auto/Manual
mode *)
PID1.Setpoint := SP.Value_1 ;
PID1.Manual := AM.Value_0 ;
PID1.Output := SEL_REAL(G :=PID1.Manual,IN0 :=PID1.Output,IN1

:=OP_In.Value_1);
PID2.Setpoint := SP.Value_2 ;
PID2.Manual := AM.Value_1 ;
PID2.Output := SEL_REAL(G :=PID2.Manual,IN0 :=PID2.Output,IN1

:=OP_In.Value_2);
(* ………… and so on *)

PID8.Setpoint := SP.Value_8 ;
PID8.Manual := AM.Value_7 ;
PID8.Output := SEL_REAL(G :=PID8.Manual,IN0 :=PID8.Output,IN1

:=OP_In.Value_8);

(* Wire the high alarm output flags in the low byte of the AL status
word *)
AL.Value_0 := PID1.Process_Val > ALH.Value_1 ;
AL.Value_1 := PID2.Process_Val > ALH.Value_2 ;
(* ………… and so on *)
AL.Value_7 := PID8.Process_Val > ALH.Value_8 ;

(* Wire the low alarm output flags in the high byte of the AL status
word *)
AL.Value_8 := PID1.Process_Val < ALL.Value_1 ;
AL.Value_9 := PID2.Process_Val < ALL.Value_2 ;
(* ………… and so on *)
AL.Value_15 := PID8.Process_Val < ALL.Value_8 ;

(* Wire the actual process values *)
PV.Value_1 := PID1.Process_Val ;
PV.Value_2 := PID2.Process_Val ;
(* ………… and so on *)
PV.Value_8 := PID8.Process_Val ;

(* Wire the actual output power values *)
OP_Out.Value_1 := PID1.Output ;
OP_Out.Value_2 := PID2.Output ;
(* ………… and so on *)
OP_Out.Value_8 := PID8.Output ;

PC3000 DeviceNet user guide 23

The DevNet_S driver will be configured in a similar way to Figure 5-7, certainly
with respect to InSize and OutSize, remembering that {InSize} and {OutSize} must
be multiples of eight.

Figure 5-7: DevNet_S configuration

Slot_No SLT 2 RCS_Err RCE 0
ErrAction EA None (0) Segments SEG 6
Time_Out TO 100ms Err_No ERR 0
ResetTmOut RTO 2s Status ST GO(1)
MAC_ID MID 1 (INPUT / OUTPUT)
DevName NAM 'Example Program___'(INPUT / OUTPUT)
Baud B 125(2) (INPUT / OUTPUT)
InSize ISZ 72 (INPUT / OUTPUT)
OutSize OSZ 40 (INPUT / OUTPUT)
Reset RST Off (0) (INPUT / OUTPUT)
Init INI Off (0) (INPUT / OUTPUT)
RunState RS Run (1) (INPUT / OUTPUT)

COMReady CRY On(1)
COMRun RUN On(1)
COMActive ACT Off(0)

The SFC will include, as part of the start up sequence, the initialisation of the
DevNet_S driver. Also, a power-up must be detected and the driver re-initialised.
A piece of SFC similar to Figure 5-8 would serve this pupose.

Figure 5-8: SFC initialisation sequence

S Wait

Init

Start

(* Wait for PC3000 to start up *)
::=Wait.Time >=T#10s

::=Wait.Time >=T#10s

(* Initialise the DevNet_S driver *)
DNS.Int :=1 (*On*);
(* Turn off the start up flag *)
PCSState.StartUp_Flag :=0 (*Off*);

::=Wait for initialise to complete *)

::=NOT DNS.Init;

(*Once initialised, put the driver into Run mode*)

DNS.RunState:=1 (*Run*);

(*Detect a start up*)

::=PsSTATE.StartUp_Flag;

24 PC3000 DeviceNet user guide

6. Glossary of Terms and References

6.1 PC3000 terms

BOOL A two state parameter. Usually either On or Off but may have other
'senses'. e.g. Yes/No or True/False.

Cold start value
The value assigned to a parameter at program generation. All
parameters have default cold start values that are assigned when a
function block is created. These values can be changed by the
programmer. At run time, when the PC3000 executes a cold start, all
parameters are assigned their cold start values.

Downloadable A function block that is not present in the PC3000 firmware. These
blocks are compiled as part of the user program and downloaded at
that time. They are separate from the user program, however, in that
they are loaded to the last RAM card (the 3rd in version 1 LCMs and
the 2nd in version 2 LCMs and LCM-PLUSs).

ENUMERATED
An integer parameter, with a limited number of valid values, for
which each value is represented by a text string.

Input A parameter that can be written to by the PS, the SFC or by wiring.
Input/Output A parameter that can be written to by the PS or the SFC and which

the block itself can also change. It usually can not be wired.
INTEGER A parameter that can store any whole number. Range is

-2147483648 to +2147483647.
Microcell PC3000 programming and configuration software that runs on a PC

in an OS/2 environment. Also provides simple SCADA functions.
Non-wirable A parameter that can not be the destination of a wiring statement.

These parameters do not appear on the Wiring Edit screen. However,
non-wirable inputs (which are often input/outputs) may be written to
by the SFC.

Output A parameter which can only be written to by the block itself. It can
be read by the PS, the SFC or wiring.

PS PC3000 Programming Software that runs on a PC in a DOS
environment or in a DOS window under Windows 3.1, Windows 95,
Windows 98, Windows NT or OS/2. Has no SCADA functionality.

REAL A parameter that can store any real number including decimal parts.
Maximum range is ±3.4*1038.

SFC Sequential Function Chart. The graphical language used to describe
sequential logic.

ST Structured Text. The text language used for wiring and within SFC
steps and transtitions.

PC3000 DeviceNet user guide 25

STRING A parameter consisting of between one and 255 bytes. Usually used
for text messages but can also be used as a data array.

Task A function block executes at regular intervals determined by the task
to which it is assigned. Between two and seven tasks may be present
in an application program with execution rates of between 5ms and
several minutes.

Win PS PC3000 Programming Software that runs on a PC in a Windows
environment under Windows 98, Windows NT or Windows 2000.

Wirable A parameter that can be the destination of a wiring statement. These
parameters appear on the Wiring Edit screen for the function block.

Wiring The connection between function block parameters which is executed
continuously at the same rate as the destination function block.

6.2 DeviceNet terms

EDS Electronic Data Sheet. A text file which contains information about a
DeviceNet slave that the master will use when it configures the
network. The one issued with the PC3000 DNS module is
PC3KDNS.EDS.

Cyclic data exchange
The mechanism whereby the specified Input data is read from all the
slaves and the specified Output data is written to all the slaves.

Produced data Data in the slave that comes from device inputs, or similar
parameters, and is read by the master, e.g. process value. Date
produced by a slave is consumed at the master.

Consumed data
Data in the slave that is written by the master and copied to device
outputs or similar parameters, e.g. controller setpoint. Data produced
by the master is consumed at the slave.

Receive Process Data
The area of dual port memory in the slave that contains data
produced by the master and, hence, consumed by the slave. Values
are written here by the master on every cyclic data exchange.

Send Process Data
The area of dual port memory in the slave that contains data
produced by the slave and, hence, consumed by the master. The
master reads this data on every cyclic data exchange.

26 PC3000 DeviceNet user guide

6.3 References

6.3.1 Reference 1

Hilscher GmbH Manufacturer of Fieldbus interface cards and modules.
Hilscher Gesellschaft für Systemautomation mbH
Rheinstraße 78
D-65795 Hattersheim
Germany
Tel: +49 (0) 6190/9907-0
Fax: +49 (0) 6190/9907-50
Hotline:+49 (0) 6190/9907-99 or e-mail hotline@hilscher.com
web: www.hilscher.com

6.3.2 Reference 2

SyCon System Configuration software for the Hilscher modules.
Runs on a PC under Windows 95/98 and is used to con
figure fieldbus networks.
Supplied by Hilscher GmbH, see 6.3.1.

6.3.3 Reference 3

Function Block Reference Eurotherm document, HA027900
Fieldbus on PC3000, Function Block Reference

6.3.4 Reference 4

General definitions Hilscher document
Toolkit Manual, General Definitions

6.3.5 Reference 5

Protocol interface manual Hilscher documents
Protocol Interface Manual, DeviceNet Slave

INTERNATIONAL SALES AND SERVICE

HA027903

© Copyright Eurotherm Limited 2002

All rights strictly reserved. No part of this document may be stored in a retrieval system, or

any form or by any means without prior written permission from Eurotherm Limited. Every

effort has been taken to ensure the accuracy of this specification. However in order to main-

tain our technological lead we are continuously improving our products which could, without

notice, result in amendments or omissions to this specification.

http://www.eurotherm.co.uk

ENG

AUSTRALIA
Eurotherm Pty. Ltd.
Telephone Sydney (+61 2) 96348444
Fax (+61 2) 96348555

AUSTRIA
Eurotherm GmbH
Telephone Vienna (+43 1) 7987601
Fax (+43 1) 7987605

BELGIUM
Eurotherm B.V.
Telephone Antwerp (+32) 85 274080
Fax (+32) 85 274081

BRAZIL
Ero Electronic do Brasil Ind. e Com Ltda.
Telephone (+19) 3237 3413
Fax (+19) 3234 7050

DENMARK
Eurotherm Danmark A/S
Telephone Copenhagen (+45 70) 234670
Fax (+45 70) 234660

FINLAND
Eurotherm Finland
Telephone (+358) 22506030
Fax (+358) 22503201

FRANCE
Eurotherm Automation SA
Telephone Lyon (+33 478) 664500
Fax (+33 478) 352490

GERMANY
Eurotherm Deutschland GmbH
Telephone Limburg (+49 6431) 2980
Fax (+49 6431) 298119
Also regional offices

HONG KONG
Eurotherm Limited
Telephone Hong Kong (+852) 28733826
Fax (+852) 28700148
Telex 0802 69257 EIFEL HX

INDIA
Eurotherm India Limited
Telephone Chennai (+9144) 4961129
Fax (+9144) 4961831

IRELAND
Eurotherm Ireland Limited
Telephone Naas (+353 45) 879937

Fax (+353 45) 875123

ITALY
Eurotherm S.r.l
Telephone Como (+39 31) 975111
Fax (+39 31) 977512
Telex 380893 EUROTH I

JAPAN
Densei-Lambda K.K.
Eurotherm Division
Telephone Tokyo (+81 3) 5714 0620
Fax (+81 3) 5714 0621

KOREA
Eurotherm Korea Limited
Telephone Seoul (+82 31) 2868507
Fax (+82 31) 2878508

NETHERLANDS
Eurotherm B.V.
Telephone Alphen a/d Ryn (+31 172) 411752
Fax (+31 172) 417260

NORWAY
Eurotherm A/S
Telephone Oslo (+47 67) 592170
Fax (+47 67) 118301

SPAIN
Eurotherm España SA
Telephone (+34 91) 6616001
Fax (+34 91) 6619093

SWEDEN
Eurotherm AB
Telephone Malmo (+46 40) 384500
Fax (+46 40) 384545

SWITZERLAND
Eurotherm Produkte (Schweiz) AG
Telephone (+41 55) 4154400
Fax (+41 55) 4154415

UNITED KINGDOM
Eurotherm Limited
CONTROLS and DATA MANAGEMENT
Telephone Worthing (+44 1903) 695888
Fax (+44 1903) 695666
PROCESS AUTOMATION
Telephone Worthing (+44 1903) 205277
Fax (+44 1903) 236465

U.S.A
Eurotherm Inc.
Telephone Leesburg (+1 703) 443 0000
Fax (+1 703) 669 1300
Web www.eurotherm.com ED 29

	Contents
	List of tables
	List of Figures
	1. Scope
	2. Related documents
	3. Overview
	4. Function Block Summary
	5. Cyclic Data Exchange
	6. Glossary of Terms and References
	Addresses and contacts

