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Introduction

This chapter describes the CONTROL class of function blocks, which provides a
range of PID control Function Blocks, which when used in conjunction with
INPUTS Function Blocks and OUTPUTS Function Blocks, enable control loops to
be configured. Controllers which provide PID with or without self and adaptive
tuning algorithms and counterparts which enable control of motorised valves are
included.

More complex control strategies such as ratio and cascade control or gain
scheduling may be implemented by interconnection of multiple control Function
Blocks.

It is recommended that the PC3000 Control Overview in this chapter is read as an
introduction to the control function provided by the PC3000. This includes
information on related subjects such as cascade and ratio control and setpoint
programming.
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Overview

CONTROL OVERVIEW

PREFACE
Scope

This document covers the following areas of functionality:
Basic description of On/Off and PID control

Relation of the above functionality and Eurotherm's suite of Control function
blocks

Basic loop configuration/ software wiring
Standard methods of manual loop tuning
Eurotherm's auto and adaptive tune mechanisms
Setpoint programming

Gain scheduling

Cascade Control

Ratio Control

Feedforward Control

Alternative Strategies

Purpose

The purpose of this document is to describe some of the standard methods and
techniques used for control of processes using the PC3000 built-in control function
blocks. It can be used as an initial introduction to control principles. Some basic
control systems knowledge however will be necessary to understand some of the
more technical sections of this document.

Introduction

Control of a process or a machine encompasses a large number of coordinated
activities. One such activity which is traditionally allocated to discrete instruments,
is feedback control of some of the measurable quantities of the process. These are
typically variables such as temperature, pressure, flow, moisture, humidity, level,
composition, etc. The PC3000 function blocks are designed so that suitable
continuous control strategies for process with different response characteristics can
be constructed.

In addition to the basic regulatory control there are a large number of activities
within a control strategy which are concerned with the control of machinery and
instrumentation. These include startups, shutdowns, activities during sensor break
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conditions, failsafe downgrading of the performance, checks on operation cycles to
ensure that the operator is warned about routine maintenance, generation of batch
reports, smooth switching between recipes, etc. In addition, the control system
handles interlocks, sequence logic, synchronisation with other equipment etc. The
majority of these activities are based on "if then else" conditions and may be
programmed using a combination of soft wiring and sequential function charts.

A large majority of processes are basically nonlinear. In order therefore to run
them optimally it is sometimes necessary to combine the style of "if then else"
logic with regulatory control functions such as PID. In fact in many applications it
is generally necessary to do this. Notable examples of these are startup and
shutdown procedures which must inevitably exist for any control scheme. Such
simple rule based control schemes can be written in the form of steps, macros and
wirings with PC3000 user programs. As these activities are essentially application
specific they are not addressed here. The issues associated with sequential control
of processes are discussed in the PC3000 User Guide Book 2 Languages.

There are essentially two methods of continuous control: "Feedback" and
"Feedforward" control. By feedback control, the variable is measured (usually
referred to as process value) and compared with its desired value, the setpoint.
The control decision (i.e. setting a value for output) is made as a result of this
comparison.

Setpoint Output Process Value

_>

Controller Process

Figure 9-1 Feedback control

Setpoint Output Process Value

Controller Process

Figure 9-2 Feedforward control

Figure 9-1 shows a simple feedback controller. Consider an electric furnace. The
"Process_Value" is a measurement of the temperature, and "Setpoint" the desired
temperature of the furnace. "Output" could be a time-proportioned signal to a logic
output or a triac. The controller is typically a Proportional, Integral, Derivative
(PID) alogorithm. In feedforward control the control decision is made without

9-2
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measuring the Process_Value. Figure 9-2 depicts feedforward control in its most
basic form. Switching an oven to full heat for a specific period of time without
measuring its temperature, for preheat purposes, is a crude example of feedforward
control. For tight control of process variables, frequently both strategies have to be
used in tandem. Typically, feedback control requires far less process knowledge
than feedforward control. The primary aim of feedback control can be summarised
as:

Reducing process uncertainty (e.g. reducing temperature variability due to
environmental conditions such as opening and closing doors and changes of
loads in an oven)

Stabilising open-loop unstable systems (e.g. exothermic reactors).

Feedforward control on the other hand is typically used to overcome time-delays
or to compensate for the effect of external influences such as control signals from
other loops in the process.
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TYPES OF CONTROL
On / Off control

On / Off or Bang-Bang control is the simplest form of feedback control. In its
simplest form it could consist of:

DOP.Process_Val := Setpoint.Val > ANIN.Process_Val;

where DOP and ANIN are instances of the respective digital output and analogue
input function blocks. The control is fully "On" when the process value (measured
via ANIN) is below setpoint and set to "Off" when it is equal or above setpoint.
Such a control scheme will continually oscillate at a rate dependent on the gain
and time scale of the underlying process. See figure 9-3 for an example of a single
channel control scheme (in this case heat-only).

In order to overcome the problem of asymmetric oscillation as shown in figure 9-
3, as well as possible relay chatter, a hysteresis (or dead-band) can be added. The
power is switched off when the process value reaches the setpoint but is only
turned on when the process value falls below the setpoint by an amount more than
a user-chosen hysteresis (or dead-band). This can be realised by the following
simple wiring and the use of SEL._BOOL function:

DOP.Process_Val := SEL_BOOL( G := DOP.Process_Val,
INO := ANIN.Process_Val < Setpoint.val - Hyst.Vval,
IN1 := ANIN.Process_Val < Setpoint.Vval);

The result of the above algorithm is shown in figure 9-4. If there are both heat and
cool channels then the algorithm can be extended to implement a setup such as that
of figure 9-5.

Another class of On/ Off controllers (e.g. sometimes associated with valve
position control) is the use of dead-zones. Here we no longer have any hysteresis.
In a dual channel case output 1 is on when the error is large and negative, output 2
is on when the error is large and positive and finally both are off when the error is
within a user-chosen zone. Figure 9-6 shows the characteristics of such an On/ Off
controller.

DOPl.Process_Val := (Setpoint.Val - ANIN.Process_Val) > DBl.Val;
DOP2.Process_Val :

(ANIN.Process_Val - Setpoint.vVal) > DB2.Val;

The wiring for the On/ Off controller with dead-zone is:

9-4
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Figure 9-3 Basic on/off control
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Figure 9-4  On/off control with hysteresis
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Figure 9-5 Dual channel on/off control with hysteresis
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Figure 9-6 Dual channel on/off control with dead-zone

PC 3000 Function Blocks 9-7



Types of Control

Power Output

4 : 4 100%

i

i

|

i

5

|

i

|

i

i

i

|

|

i 0%
; -
! Setpoint

Proportional
Band
o Process Value -
Span Low Span High

Figure 9-7 Proportional control

PID Control

Proportional control

Clearly, the main problem of On/ Off control is that the process variable never
settles at the setpoint. More accurate control can be achieved if instead of applying
a hysteresis or a dead-zone we apply an output proportional to the difference
between the setpoint and process value. This is shown in figure 9-7. 100% output
is applied for process value more than one proportional band setting below the
setpoint. It is then linearly decreased from 100% to 0% as the process variable
approaches the setpoint. The output is set to zero for process values larger than
setpoint. If more than one output channel is used the proportional band can be
extended accordingly. Usually limits are applied for the process value and the
setpoint to lie between Span_Low and Span_High. There is some confusion
regarding the use of the term "Proportional Band". It refers to two distinct but
related quantities:

The region or band where the control is a linear function of error

The setting (i.e. width) of the linear region for control

In this document we refer to the former as the proportional band and the latter as
the proportional band setting or width. In the PC3000 suite of function blocks the
width is set through the parameter "Prop_Band". The proportional band width in
PC3000 is set as a percentage of the span (the difference between Span_High and
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Span_Low).

Consider an oven. At steady state the total heat input balances the losses. This
implies that for any "lossy" oven with a proportional controller there will be an
error between the setpoint and process value at steady state. The magnitude of the
error is clearly a function of the size of the proportional band: the narrower the
proportional band the smaller the steady-state error. The narrower the proportional
band, however, the closer the controller will be to an On/Off controller and as such
more oscillatory. This implies that there is a limit beyond which decreasing the
proportional band setting will be detrimental to the performance of the loop.

Shift of
Proportional Band Power Output
A 100%
_____ A Manual
Reset
0%
>
‘ Setpoint
Proportional
Band
- Process Value >
Span Low Span High

Figure 9-8  The effect of manual reset

Proportional plus integral control
In order to correct for steady state errors one of two strategies can be employed:

The function of "manual reset" can be used. Manual reset, as the name implies can
be used to reset the error to zero manually. The value of manual reset is chosen as
a percentage of the output span and is typically set to 50%. Manual Reset is added
to the contribution of the proportional term. Setting the manual reset value can be
considered graphically as shifting the proportional band sideways by MR x PB x
Span / 10000 where MR is the Manual_Reset value, PB is the proportional band
width in percentage of the span. Figure 9-8 shows the relationship of manual reset
and the proportional band.
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'Automatic Reset' or integral control can be used. With integral control the output
of the controller is proportional to the integral of the error over time.

Integral _Out = 10000 J. e(t)dt
Span x PB x T,

e(t) = Setpoint — Process_ Value

Ti is a user-chosen value for the integral time and is traditionally defined as the
time taken for the proportional band to shift by one unit for a constant unity error.
The proportional band will continue to shift until such time as the error is driven to
zero at steady-state. The integral term could be viewed as setting the average value
of control while the proportional term reacts to short term disturbances. The value
of the integral time should therefore be set commensurate with the open-loop
process time constants and desired closed-loop responses. See PID Tuning for
details on tuning control loops.

For proportional plus integral control the contribution of the integral and
proportional control are added together. Note that manual and automatic reset are
mutually exclusive. Proportional plus Integral control is the most common method
for feedback control.

Proportional plus integral plus derivative control

PI control can solve most control problems. The control action in PI control
however, is always retrospective. Overshoot and slow recovery from disturbances
are very common for PI controllers.

Consider a process with a large thermal inertia. On a setpoint increase for a PI
controller we will have the following sequence of events. The proportional part of
the control will cause an initial kick in the output. The process value will begin to
move very slowly towards the new setpoint. Meanwhile, the integral term will
continue to integrate the error between the setpoint and process value. This will
cause a subsequent gradual increase of the controller output. The most likely event
is that the controller output as well as the contribution of the integral term will
grow significantly larger than the required new steady-state value. The only way
the control could move back towards the new steady-state value is for the error to
change sign: the process value must overshoot its new target. For processes with
large thermal inertia this overshoot may become unacceptable.

Derivative control provides a means for dealing with this kind of processes.
Consider the error term e(t). In order to overcome the overshoot problem the
contribution of the proportional term must change sign before the instantaneous
error e(t) does. A simple and effective way is to introduce an anticipatory term so
instead of looking at e(t) the controller must see an estimate of e(t + Td) (the
prediction of the error Td seconds ahead).

9-10
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To a first approximation this term is given by:

de(t)
dt

e(t+Ty)=e(t)+T,

which in effect is the linear extrapolation of the error on the basis of its current rate
of change. If the proportional control operates on this predicted error the problem
of overshoot will to a great extent be eliminated. This implies that the control will
now become:

10000

1
Output = e(t +—J.e t)+T
P Span x Prop_Band [¢® T, ©+Tq

de(t) ]
dt

This is the standard textbook PID control law. In many applications it is customary
to set a gain value K instead of a proportional band setting. The gain K is then
equivalent to:

_ 10000
Span x Prop_Band

PID control has another beneficial effect. Consider a furnace with only a PI
controller. The drop in the temperature due to opening a door can be quite rapid.
If a wide proportional band setting is used however, the response of the controller
can be quite slow. What is required is adjustment of the proportional band
according to this rate of change. If the process value is moving rapidly away from
the target the effective proportional band should be narrowed down. This will
improve the recovery time of the controlled process. Derivative term in a PID
provides such a mechanism for narrowing the effective proportional band.

Figure 9-9 shows the difference between PI and PID control for setpoint changes
and disturbance rejection. The top two graphs are the setpoint, process value and
the output power of the PI controller respectively. Note the overshoot in the initial
setpoint transient. The bottom two graphs are the PID controller response with the
same process. Note the much improved recovery time for the PID controller from
a disturbance as well as elimination of the initial overshoot. The price paid,
however, is the increased activity of the output signal.
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Figure 9-9 Pl and PID control
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Figure 9-10 Cutback in PID control

In practice the derivative term is filtered by a first order low pass filter to
overcome the detrimental effects of amplifying noise at high frequencies. In
addition, in process control applications the derivative term is taken from the
process value as opposed to the error signal.

The Eurotherm algorithm is a non-interacting PID. If the PID values are known for
an interacting PID loop the conversion to the non-interacting version is given by

PB=T, x PB'/(T,+T,)
Ti=T,+T,
Td=T,T /(T +T',)

The primes indicate the settings of the equivalent interacting PID. Note that PB
and PB' either should be in engineering units or in percentage of the span. PC3000
function blocks require the proportional band as a percentage of the span.

Cutback

For most processes basic PID control or subsets thereof (P, PI or PD) are adequate
provided the changes in the operating conditions are not too large. For large errors
more drastic and immediate action is required. Cutback provides one such
mechanism. If the process value is below (Setpoint - Cutback_Low) value
maximum output power is applied and if the process value is above
(Setpoint+Cutback_ILLow) minimum output power is applied. Consider figure 9-10.
If the overshoot is due to control saturation then cutback may be able to
compensate for this overshoot and give a response as shown in figure 9-10. As the
process value crosses this so-called cutback band the control reverts to standard
PID bumplessly. Judicious choice of cutback values can improve large setpoint
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response and disturbance recovery of the controlled system.

The cutback values can be set manually or by Autotune in the case PID_Auto and
VP_Auto function blocks. A reasonable tuning strategy is to

Set high and low cutback values to zero (off);

When you are satisfied with the response to small disturbances (those which
do not require maximum/ minimum output levels) set cutback parameters to
one proportional band;

Measure the response to large changes of setpoint and decide whether
overshoot performance is satisfactory;

Change the cutback parameter setting to correct the overshoot performance,
and check the result. The setpoint change used to measure overshoot should be
considerably greater than the cutback setting. The change in the cutback
setting should be approximately equal to the increase or decrease of overshoot
required. Typically, decreasing the cutback parameter will increase overshoot
(and decrease warm-up time) and vice versa. If cutback is set too wide it will
be totally ineffective. A value of zero also means off.

Cutback is sometimes considered as the point where the controller begins to cut
the output power back from the maximum value. This however will only happen if
the rate of change of process value is within a specified range. Consider the case of
approaching the cutback region from below. While the process value is smaller
than the setpoint minus the cutback low value, the output power sits at maximum.
This is sometimes expressed as the proportional band being clamped at the low
cutback. As the process value crosses the low cutback point the control is reverted
to standard PID. The controller will only begin to reduce the power if the rate of
increase of the control signal due to the integral action is balanced by the rate of
decrease due to proportional and derivative terms. Broadly speaking this means
that the controller will begin to cut the power back at the cutback point only if the
rate of increase of process value is greater than the cutback value divided by
integral time. This in turn means that the rate of rise of measured value must be
faster than the movement of the proportional band.

Consider a process which overshoots on large setpoint changes. If for small
setpoint changes the process response is acceptable but not for large ones it is
probably because the controller does not cut the power back fast enough. Here
cutback can be quite useful. Set cutback to the proportional band setting in
engineering units. Measure the overshoot, if any, of the process on a similar size
setpoint change. Also take note of the maximum rate of change of process value.
Set the new value of cutback to the old one plus the overshoot. If this value
divided by the integral time is still smaller than the maximum rate of change,
cutback will eliminate overshoot. If not, set the cutback value to integral time
times the maximum rate of change and try to improve the response by using
derivative action if possible.

In many application areas the designer has to perform a compromise between the
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startup speed and overshoot. Here also cutback can be used effectively to improve
the response. The designer can perform a simple compromise between the degree
of overshoot and startup speed.

Cutback therefore is a primary tool for control with large signal deviations
whereas the basic PID settings are used for the response of the controller to small
signal variations.

Dual channel PID

Consider barrel zones of an extruder. Heating is performed via electric heaters and
cooling via cooling fans. The signals for heating and cooling appear on two
separate channels. Note that typically the heating and cooling gains are different.
This can be compensated for by using the function of relative channel 2 gain. It
may also be desirable to either; have a dead-zone between turning channel 1 off
and turning channel 2 on; or turn channel 2 on before turning channel 1 off

completely.
Ch2 Output  100% A Ch1_Output
NN
AU N
N
NN
NNy
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \
\ \ \
\ \
-100% R VA 100%
-4 \ \J_ \ >
0% Output
Positive Dead-Band Negative Dead-Band

Figure 9-11  Graphical relationship of channel 2 gains and dead-zones

Both of these functions can be catered for via the channel-1-channel-2 dead-band
facility. Conceptually then the outputs of the dual channel PID are:

Ch1_Output
Ch2_ Output

Output
Rel_Ch2_Gain x (Output+Chl_Ch2_D_B)

Of course only positive values are valid for any of the channel outputs. Figure 9-
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11 shows the graphical relationship of the output of the basic PID law and the
output of the separate channels in a PID. See the PID function block description
for more details. The dual channel PID is also useful when using split level valves
with chemical batch reactors. The dual channel PID is selected by setting
Output_low to some negative value (typically -100%).

Extensions to the basic PID
There are a number of occasions when the standard PID as described in the
previous sections is not suitable and minor modifications are necessary to improve
its response. Some of these are described below.

Modes of control
In order to set integral or derivative terms off the Integral and Derivative times
should be set to zero. So P-only can be achieved by setting Ti and Td to zero, PD
by setting Ti to zero, and PI by setting Td to zero.

Rate limits
It is quite common to put maximum rate limits on the output of the function block.
This is typically used to give smoother variation of the control signals, or to take
into account the fact that some of the elements within the control loop (e.g. valves)
are slew rate limited.

Proportional kick

On stepwise change of the setpoint the standard PID will give a kick in the control
signal proportional to the size of the instantaneous error, and inversely
proportional to the magnitude of the proportional band setting. In many situations
this type of response may not be suitable. If "Debump"” is set at the same time as
the setpoint change then the PID will respond smoothly to a setpoint change. This
may be actioned within a step of the SFC.
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Figure 9-12  PID with and without proportional kick

Pid.Debump : = 1 (* Yes *);
Pid.Setpoint : = NewSP.Val;

This ensures that the proportional action is on the process value alone. This
method only works if the instantaneous error is no more than two proportional
band widths in engineering units. For larger setpoint changes the function of
output rate limit could be employed whereby the maximum rate of change of
output can be specified and output rate limit is enabled before the setpoint change
is performed. Figure 9-12 shows a PI controller with and without the proportional
kick. The PI with proportional kick responds faster to a setpoint change, but note
that the output power “jumps' instantaneously. When the proportional kick is
eliminated the power ramps gently towards its new value. The settling time in the
latter case is much longer. It is also possible to use the function of feedforward to
get various forms of PID.
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Derivative kick

In addition to the proportional kick described above the derivative acting on the
error will cause a kick due to derivative action on setpoint changes. To eliminate
this the derivative can be set to operate on process value instead of the error. This
is done by setting the Deriv_On_PYV input of the PID function block. Figure 9-13
shows the case of PID control with and without the derivative acting on the error.
In the case where the derivative is on the error the power output is set to a large
value (outside the scale of the graph) for a very brief period. This results in faster
startup and also less overshoot. The power output in the case where the derivative
acts on the process value, only exhibits the initial proportional kick and is smooth

there after.

0
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O . 5 = .f

Setpoint and Process Value
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Power Output
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Figure 9-13  PID with and without derivative kick
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Setpoint tracking

It is common, especially in some cascade loops to have the setpoint track process
value in manual. This can of course be done via an external selection block. The
selection is given by:
Pid.Setpoint := SEL_REAL(G:= Pid.Manual, INO:= SP.Val,
INl:= Pid.Process_Val);

SP.Val is set to Pid.Setpoint in manual.

This is important when changing between AUTO and MANUAL control modes.
The change-over is always bumpless as is normally required for cascade loops.

Direct and reverse acting control

Feedback is used to restore the process value to the setpoint in the event of
external disturbances or changes of setpoint. In the case of a gas furnace a drop in
the temperature due to a disturbance is counteracted by an increase in the gas (i.e.
reverse acting control). Controlling the moisture in a rotary drier using the gas as
the manipulated variable, or controlling the temperature in cryogenic applications
by manipulating the flow of liquid nitrogen or helium on the other hand requires a
direct acting controller whereby a reduction in the process value is counteracted by
a decrease in the output signal. In PC3000 function blocks the boolean input Direct
allows a switchover from reverse acting to direct acting control.

Sensor breaks

With a large class of low level (millivolt measurements) inputs, the hardware is
capable of indicating sensor break conditions. In addition it is possible to postulate
soft sensor break conditions by checking process values against limits. In either
case, the PID has to be disabled. The function block has a boolean input
Sensor_Break and the default output of the PID (i.e. safe value of output for such
conditions) is set by Break_Output. Clearly, more sofisticated strategies can be
applied in the user program depending on the severity of the sensor failure.
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VALVE POSITIONERS

Frequently, a constant-speed reversible motor is used to drive a valve or a lever.
The valve may deliver gas / combustion air to some gas burners in a furnace.
There are essentially three possible states for the controller: sending a
"Raise"pulse, a "Lower" pulse or no pulse at all. The main control requirement in
the case of a gas furnace for example is accurate temperature control. There are
several ways of dealing with this depending on the availability and reliability of
the valve position signals from potentiometers.
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Figure 9-14  Notional view of a valve positioning algorithm

Valve positioning without potentiometer feedback

In cases where no potentiometer signal is available the PC3000 VP or its auto tune
version can be used. Figure 9-14 shows the basic operation of a valve positioner.

In addition to the usual PID settings the following characteristics of the valve must
also be incorporated.

Valve travel time

This is the time taken for the valve to travel from one end stop to the other. In
many instances the time may be different for the travel times from fully closed to
fully open as opposed to fully open to fully closed. In these circumstances the
average value is adopted.

Minimum on time

This is the minimum time the controller will stay in the same state of opening the
valve, closing the valve or keeping it stationary. This is because many valves have
backlash and minimum on time is the length of time a pulse has to persist for the
valve to react to the incoming signal from the controller.

9-20 PC 3000 Function Blocks



Valve Positioners

Update time

This is the interval between updates of the update filter of the valve positioner as
shown in figure 9-15. See PID Tuning which describes the method of tuning these
values for the particular application.

Valve positioning with unreliable potentiometer feedback

There are facilities within the VP for use of potentiometer feedback signals.
Typically the pot feedback signals are not terribly reliable. Firstly, they tend to be
rather noisy and secondly it is not uncommon to lose the signals altogether. For
these reasons the VP algorithm uses these as indicators of the position and they are
used for setting hard endstop limits (Pot_Limit_Hi and Pot_Limit_I.o) for the
valve as opposed to true position control.

Valve positioning with reliable potentiometer feedback

If the valve position signal is known to be available and reliable then it could be
used for proper feedback control. A simple cascade structure that uses a basic
On/Off control with dead-zone and hysteresis can be used for the position
feedback stage and a standard PID can provide the necessary setpoint for this
position loop.

Figure 9-16 shows one such setup. Such a structure converts the integration
properties of the valve to something which behaves more like a lag, thus
improving the performance of the control loop.
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Figure 9-15 Basic incremental valve positioner block diagram
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Figure 9-16 Cascade valve positioner
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INPUTS, OUTPUTS AND CONTROL LOOPS

Input signal conditioning

The analogue signals measured by PC3000 for control are processed in the
following way:

With AIM2/AIM4 there is an analogue first order low pass filter with a cut-off
frequency at 1.6 Hz (100ms time constant), as well as a 4 sample rolling
average filter. The four sample rolling average is tied to the analogue task.
There is also a discrete-time first order low pass filter which the user can select
its time constant. The choice of the low pass filter time constant is discussed in
the section on tuning. The necessary calculations for cold junction
compensation and linearizations are performed within the module for a variety
of thermocouples and/or resistance thermometer inputs.

With the AIOS the low pass filter is a second order butterworth filter with cut-
off frequencies selectable to be at 160Hz, 80Hz, 32Hz and 16Hz. There is no
rolling average filtering. There is no user-selectable filter as part of the
function block either.

For signals measured via communications links, and those computed inferentially
where there is no filtering. Also there is no spike filtering of any kind on the
incoming signals. These could be done via user programs. Spike filtering could
prove to be quite useful. There are a variety of methods but a simple scheme
could use the Rate Limit function block.

Input Linearisation

Most of the linearisation is performed in the module itself. There is the facility to
scale and offset measurements before and after the linearisation curves for the
thermocouples. There is a square root extraction also available as a part of the
linearisation. This allows measurements such as pressure from a differential
pressure cell to be converted and calibrated for flow control. Other conversions
such as inferring relative humidity measurements from wet and dry temperatures
according to BS 4883, must be performed via the user program.

Results of polynomial fits can be easily used in a simple wiring statement. For
example, if

Inferred_Var = axPV2 + bxPV + ¢

then the simple wiring statement in PC3000 can be performed whereby

Inferred.Val := (a.Val * ANIN.Process_Val + b.Val) * ANIN.Process_Val +
c.Val;
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Clearly if other functions such as exponentials, square roots or logarithms are also
used then these can be incorporated in the linearisation equations.

Another method of linearisation is via linear interpolation between several given
points. Consider the three segments as shown in figure 9-17

The linearisation can be done via the wiring shown below

Y.val := SEL_REAL(C := (X.Val >= X1.Val) AND (X.Val < X2.Val),
INO:= SEL REAL(G := (X.Val »>= X2.Val) AND (X.Val < X3.Val),
INO:= SEL_REAL(G
INO:= Y4.Val,
INl:= Y3.Val +(X.Val-X3.Val)*(Y4.Val-Y3.Val)/(X4.Val-X3.Val))
INl:= Y2.Val+(X.Val-X2.Val)*(Y3.Val-Y2.vVal)/(X3.Val-X2.vVal)),

INl:= Y1.Val +(X.Val-X1.val)*(Y2.Val-Y1l.Val)/(X2.Val-X1.val));

(X.val >= X3.Val) AND (X.Val < X4.val),

Y-GXiSA (X4’ y4)

(x2, y2)

(x1, y1) X-axis

Figure 9-17 Input characteristics

Outputs
Typically, the output of the PID function block is wired to
Analogue Output Module
Time Proportioning Output
Remote/Slave variable

Another internal function block

The analogue output module can deliver a variety output ranges as well as the
choice between voltages and currents.

With the majority of temperature control applications time proportioning outputs
are used. Conceptually, this is as shown in figure 9-18. The choice of cycle times
is described as part of tuning the PID.
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Remote/Slave variables are typically used when outstations such as 900 series of
discrete instruments are used in either a local control mode or as retransmitting
stations. This mode provides both integrity and flexibility through the use of
redundancy in the control system design.

Other internal function blocks are typically used when configuring cascade or
multi-loop type control strategies.

]OO%A

0%
-1 —>

100%
0% -
Time

Figure 9-18 Time proportioning outputs

Control loops

The simplest method of building a PID control loop is through having an instance
of

PID function block

Analogue Input function block

Analogue Output function block.
and the following software wiring
Pid.Process Val := ANIN.Process Val;
ANOUT.Process_Val := Pid.Chl_Output;

for a single channel PID. If dual channel is necessary then clearly the second
output is wired to another analogue output. The ranges of the output are selected
within the output function block.

For time proportioning outputs cycle-times will have to be set as well. In case of
PID_Auto (auto tuning version of the PID) the cycle-times can be wired to the
values set by the PID_Auto block if desired. Time-proportioning outputs used in
conjunction with nonlinear cooling (water-cooling) of plastic extruders are
selected via the Delin_Type input of the function block.
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WARNING!

In many applications it is important to include an independent
protection mechanism. The best form of protection is a
completely independent 'Policeman’. This is a separate
overtemperature alarm with its own thermocouple or sensor, and,
on alarm will pull out the main contactor or shut off the valve to
ensure plant safety. The normal function of the 'Policeman' is to
act as an overtemperature alarm forming part of the overall
process protection strategy. As such it is essential that all elements
of the alarm system be regularly checked to ensure that they are in
full working order.

Startup and shutdown

The PID function block performs a debump on its first execution. This implies that
the initial output power will be set at zero (assuming a cold start) even if the error
between the cold start setpoint and process value is large. The power will then
gradually increase at a rate dependent on the settings of the controller and the
dynamics of the process itself. This could take an inordinate length of time
especially if integral time is set to a large value.

If the initial conditions of the process are known then it is best to start the PID in
manual mode. The user program is then at liberty to set the initial output power.
The controller could then be set to automatic. The transfer will be bumpless and
PID will start operating from a known state. If the initial state is not known the
function of cutback can be used. Another possibility is to startup under
proportional only control and switchover to PI soon after the startup.

A similar situation arises when for example the machine under control is switched
off, or the actuators are disconnected from the controller but the PID is left in
automatic mode. As the controller behaves as if it is in control this may result in
applying full power to keep the process value at setpoint. However, since the
actuator is no longer connected, the process value will coast towards its 'ambient’
value. As the machine is switched back on or the actuator reconnected the
controller will immediately apply full power. This could have disasterous
consequences. Again cutback could prove helpful here. The best solution,
however, is to ensure that the controller is put into manual or track mode as soon
as the actuator is disconnected. After reconnection as with the initial startup
condition the power level should be set to some safe value and only then the
controller set to automatic again.

In most cases no special precaution for startups and shutdowns needs to be taken.
Most temperature loops will compensate for there situations. However, handling
startup and shutdown conditions is a function of the application and as such should
be handled in user programs. Relying on PID function block to deal with the initial
conditions on its own may have unexpected consequences.
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Valve positioners
The input signals for a valve positioning control scheme are
The primary process value (typically a temperature);

The potentiometer position feedback. This feedback signal is derived from a
potentiometer. A standard analogue input channel can be used for the
potentiometer position measurement. The power for this could either be
supplied externally or from an analogue output (if one is available). It is also
relatively easy to set up a simple circuit with a pull up resistor so that sensor
break conditions can be detected in software.

The output of the controller is via any digital output (relay or logic).
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PID TUNING

The default PID values of the PC3000 function blocks will probably work well for
most cases involving extruders, or medium size furnaces. In the more general case
however optimum machine performance is obtained only if the control loops are
well tuned. The reader is referred to various control textbooks mentioned at the
end of this document for loop tuning details. Here we concentrate on some general
guidelines which are applicable to most cases.

Manual tuning

The most common method of tuning PID controllers is trial and error. Through the
use of a few simple rules of thumb, however, it is possible to adjust the PID
parameters to quite reasonable accuracy for most processes. It must be noted that
the accuracy of control is to a large extent a function of transducer quality,
actuation power, and open-loop dynamics of the process as it is a function of the
settings of the PID controller. This is why it is important to pay a reasonable
attention to the characteristics of the process under control when choosing tuning
parameters for the controller.

The reaction curve method

A large majority of processes are open-loop stable. This means that if left alone
the process value will stabilise at some value instead of steadily drifting to one of
the limits. There are exceptions to this. An exothermic batch reactor is one such
example: it requires tight closed-loop control as soon as the reaction gets going.
This is because as the reaction gets going, it begins to generate excess heat which
has to be taken away by active cooling. If left alone, this reaction heat will
continue to heat up the reactants thus speeding the reaction up and increasing the
temperatures further. Such a process is open-loop unstable. The tuning method
described in this section is only applicable to open-loop stable processes.

The reaction curve method is as follows. If the process is under automatic control
set the controller to manual and wait until the process value stabilises. Apply a
step change of a few percent (usually about 10%) to the controller output, and
examine the reaction curve of the process. The size of the output step has to be
large enough so that its effect is distinguishable from normal noise and not too
large so that the nonlinear effects are not encountered. When the process value has
settled at its new value change the output to its original value. Examine the
reaction of the process to this reverse step. Typically one of the following types of
responses could be expected.

Single Lag plus Dead-Time
Multiple Lags plus Dead-Time

Nonminimum Phase Behaviour
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Oscillatory Behaviour

Dead-time is the period of time where there is no significant change in the process
value after changing the output of the controller. The four examples are shown in
figure 9-19.

The first two occur frequently in practice with industrial processes. Nonminimum
phase behaviour is one where the process initially reacts in the opposite direction,
the shrink and swell effect in boilers is a typical example of nonminimum phase
behaviour. Some rotary driers also exhibit this behaviour during moisture control.
The fourth, oscillatory behaviour is usually seen with either mechanical systems or
with closed-loop behaviour of the slave loops in cascade structures. If the cycle
time of the mechanical oscillation is less than 100 times the PID function block
task cycle time, damping of the oscillations through PID tuning is not possible. For
example, for a PID function block running in a 100ms task, oscillations with a
cycle time of less than 10 seconds cannot be controlled.

Oscillatory behaviour can be due to the damping of the inner loop of a cascade
loop being too low in which case the inner loop should be retuned first to stabilise
the behaviour.

First Order + Dead-Time High Order + Dead-Time

1 1
08 r - 08r -
0.6 - 0.6 -
04 - 04r -
0.2 - 0.2 -
0 ! 0 '
0 5 10 0 5 10
Inverse Response Oscillatory Response
1 g 1.5 ;
0.5 . 1T =
0 . 05 -
-0.5 : 0 L
0 5 10 0 5 10

Figure 9-19  Some typical reaction curves

Three quantities are computed from the reaction curve, see figure 9-20.

Dead-Time (Dp): is the estimated dead time.
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A Process Value

PV2
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Process Dead Process Time
Time Constant

Figure 9-20 Gain, Time Constant and Dead Time Computation from
Reaction Curve

Controller type Prop_Band Integral Derivative
P 100KpNd
Pl 110KpNd 3Dp
PID 80KpNd 2Dp Dp/2
Table 9-1  PID settings from a reaction curve
Controller type Prop_Band Integral Derivative
P 2Pu
P 2.2Pu 0.8Tu
PID 1.67Pu 0.5Tu 0.12Tu

Table 9-2  Ziegler-Nichols rules for tuning

Time Constant (Tp): This is the estimated time constant or reaction time of the
process. See figure 9-20. This is the time from the intercept of the asymptote
with the time axis and its intercept with the new output level.

Process Gain (Kp): This is the ratio of the change in the process value steady-
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states to the change in controller output.

The normalised dead-time is then given by

_Dp

N, =
d Tp

There are a variety of design rules give the open-loop reaction curve of the
process, the simplest forms are given in table 9-1. Note that the proportional band
settings in table 9- 1 are in engineering units.

There are corrections to the table for the PID values given by Cohen and Coon
which deal with the case of delay dominant systems a lot better. Shinskey also
gives PID values for various ratios of time constants to dead-times. His
calculations give a controller with minimum mean square error. These are included
in the appendix.

The ultimate sensitivity method

The ultimate sensitivity method is a classical method inspired by Ziegler and
Nichols. The idea is to control the process under proportional action only and to
decrease the proportional band setting until the loop oscillates. In the case of
heat/cool control the relative channel 2 gain may need to be adjusted too, until the
oscillations are reasonably symmetrical. This value of the proportional band Pu
and the period of oscillation Tu are noted. A possible sequence of operation is as
shown in figure 9-21. The proportional band setting is decreased progressively
until sustained oscilation is achieved. The PID values can then computed from
table 9-2.

These settings are acceptable for a large variety of systems and were originally
designed to give quarter decay ratio for disturbances. This usually gives poor
setpoint responses and is not very good for processes with long dead-time.
Refinements of these settings are given by Hang, Astrom and Ho [5]. Their
refinements uses a combination of reaction curve and the ultimate sensitivity tests.
See also the section on more advanced strategies in this document for the rules and
guidelines laid down by these refined methods.
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Setpoint and Process Value
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Figure 9-21 Example of an ultimate sensitivity test

Subsequent fine tuning of the controllers can then be done manually.

Trial and error method

In many instances it is not possible to employ either of the methods described
above for getting a starting value for PID settings. Certain basic rules help tuning
the control loop.

1.  Tuning is typically performed in the order P, I, D, relative channel 2 gain
and cycle-time, cutback (if applicable). Set cutbacks to off before starting
manual tuning with trial and error. Set cycle-times to minimum and
relative channel 2 gain to unity unless it is clear that they are set
reasonably. Set Span_High and Span_Low to the absolute high and low
limits of the process value. Note that the function blocks will enter a
sensor break condition if the process value is more than 10% outside the
span.
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2.  Ensure that the correct form of control (i.e. reverse or direct acting) is
used.

3. Do not use integral or derivative if they are not really necessary. With
most single capacities a narrow proportional band settings is adequate.
Level control in a surge tank is a good example. Inner loops in cascade
control is another example. P only or PD control (in special cases)
usually work quite well.

4.  PI control is quite acceptable in most regulation problems. Derivative
control is of little or no use with ;

Processes with small lags or inertia: Derivative action has nothing
to contribute here.

Processes with large dead-times: Derivative action does not provide
the correct form of process value prediction here.

Processes with high noise levels: Derivative action amplifies the
noise levels significantly thus resulting in poor performance.

5.  PID works extremely well for processes with large thermal lags and little
or no dead-times.

6. Increasing the Prop_Band reduces the recovery speed from disturbances
and improves stability for open-loop stable processes. For unstable
systems like batch reactors the Prop_Band must be narrowed down up to
a point to improve stability.

7. Increasing Integral time slows down oscillations in open-loop stable
processes.

8. Increasing Derivative time improves recovery speed and stability up to a
point. The ratio of Integral to Derivative of less than 3 to 1 is not
recommended.

9. In a dual channel PID increase relative channel 2 gain if the controller
uses too much power in the second channel thus causing oscillations.

10. When using time proportioning outputs, if logic outputs are used set the
cycle time to some small value such as 1 second or less. If relays are used
reasonable values are about 1/10th to 1/20th of integral time. Too fast a
cycle time will wear the relays out and is usually unnecessary. Too large
a cycle time will increase the tendency of the loop to limit cycle (hunt).

11. If PID values appear to be adequate for small changes and not for large
ones use the function of cutback. Set initial values of cutback to the
proportional band setting in engineering units. If using derivative control,
then increasing the cutback values slightly outside the proportional band
setting may improve overshoots to setpoint changes. Do not deviate too
far outside or inside the proportional band setting of the PID controller
when adjusting the cutback values.

12. The aim of the filters on the incoming analogue signals is to filter out the
unwanted noise. Too long a filter time constant may lead to loop
instability problems as then the lag on the process value may become too

PC 3000 Function Blocks 9-33



PID Tuning

large. The rule of thumb for the filter selection is that the filter time
constant should be at least an order of magnitude smaller than the process
time scale. If the noise is still prevalent at this scale then there is very
little any controller can do. A better sensing device may be necessary.

Tuning of valve positioners and additional parameters

Valve positioners require tuning of three more parameters. These are the valve
travel time, the minimum on time and the update time. The valve travel time is as
discussed in the section, is the time taken for the continuous travel of the valve
from one end stop to the other.

Typically, an experiment in measuring this travel time consists of opening the
valve fully and subsequently closing it. Travel time is then the average of the two
times. The minimum on time is the minimum length of time an on pulse must last
before the valve begins to react. In case of availability of a valve position signal
the minimum on time can be set much more accurately by examining this signal.

The position signal should probably be filtered by a filter time constant of one
second or so to remove the effect of noise to a reasonable extent. The valve update
like the cycle time of time proportioning outputs regulates the amount of activity
of the raise and lower pulses. The valve update time, as the name suggests, is the
interval at which the "setpoint” of the valve position part of the algorithm is
updated. This means that every "valve update time" the PID part of the controller
requests a "new" position from the positioner part of the algorithm. If the valve
update time is set to its minimum value (i.e. the task interval of the function block)
then the valve activity will be at its highest. The controller will almost always
require to raise or lower the valve slightly at every sample.

As we increase the update time there will be an interval where the valve receives a
few raise and lower pulses in the initial part of the update time and there is a
subsequent period of total inactivity. If the update time is set too long (like cycle
time in time proportioning) there is a likelihood of limit cycling effects (hunting).
A reasonable value for the valve update time is the larger of Ti/24 or Td/4. In
some exceptional applications, especially when dealing with faster processes the
update time may be needed to be set to values larger than the recommended
figures suggested here to reduce the valve activity.

For PID tuning using the tests described the situation is somewhat different.
Clearly, if the valve position signals are not available it would be impossible to
know exactly what output signal is being applied, so the size of the "bump" is
selected by setting the duration of an on or an off pulse. If the valve travel time is
known to reasonable accuracy then the size of the incremental output applied is
known.

Provided the response time of the process is reasonably longer than that of the
valve the PID settings using the tables is probably quite adequate. Typically, the
proportional band may have to be increased somewhat. The ultimate sensitivity
method can be applied and the tuning parameters should be reasonably adequate.
In either case it is important to have a reasonable idea about the travel time of the
valve.
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Automatic one shot tuning

PC3000 in common with 800 and 900 series of instruments offers single shot self-
tune facility. A brief description of the method used is given here. The readers are
also referred to [3] which gives a detailed discussion of the performance of the
algorithm on four zones of a wire coating plastic extruder.

Setpointy

Process
Value
Time
100%
Output *! |
| r\/
0% :

Figure 9-22 Basic PID_Auto sequence

The method is based on closed-loop cycling method (CLCM). The rules applied
are to give a critically damped closed-loop response. The tuner can operate in any
of the variety of P, PI, PD and PID control configuration. The method requires
minimal prior knowledge -- the only requirement is the magnitude of
maximum/minimum output values allowable on the process. It is undesirable to
allow closed-loop cycling on some processes: auto tune can not be used for these.
By default the maximum and minimum values of the controller output during an
auto tune are set to the values of Output_High and Output_Low. In more recent
versions of firmware AT_Out_High and AT_Out_Low can be used. Before
starting an Autotune the user can limit these values to reduce the magnitude of
process upset during the tuning phase.

For the implementation of Autotune the controller output is either
frozen if the initial error is less than 1% of the span, or

set to zero if the initial error is larger than 1% of the span.

The controller output is maintained at this level for a prescribed period of time
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depending on the task the PID_Auto function block is associated with. This is one
minute for task intervals upto 5 seconds and it is appropriately adjusted for longer
intervals but never more than five minutes. For most applications it is unlikely that
task intervals as long as 5 seconds will be required for the PID block. During the
wait period the block examines the overall trend of the process variable and
computes a triggering level for the subsequent adaptive tuning if required.

During the initial wait period the setpoint can be set to the required operating
condition. For setpoints which differ from the process value by more than 1% of
the span, the algorithm applies maximum or minimum controller output to drive
the process value to the setpoint as quickly as possible. The process value is
continuously monitored, and an estimate of the delay time in the process is made
from these readings. This estimate is continuously updated until the next stage of
tuning is entered. This estimate is used to provide timeouts in a supervisory
algorithm, should the process not complete in any of the subsequent phases as
expected.

To avoid overshoots the tuner performs its test at an artificial setpoint below or
above the actual setpoint. Some processes with long dead-times will overshoot this
setpoint despite the precaution of the artificial setpoint. It is recommended to use
limited output values for processes with long dead-times. When the process value
reaches this artificial setpoint, the algorithm proceeds into a finite state machine
implementation of on-off control at this process value. The magnitude of this peak
and the time to achieve this are stored and the algorithm proceeds to the next state.
The algorithm continues through states 1 to 6 (7 if dual channel output is chosen)
as shown in figure 9-22 The tuner checks all timings for reasonableness and when
the final stage is reached the PID values according to a modified Ziegler-Nichols
rule are computed.

The tuner will perform a tune at setpoint if the process value at the end of the
initial wait period is no more than 1% away from the setpoint. In this case, the
dead-time of the process is not estimated and the PID parameters are computed on
the basis of the oscillation amplitude and periods alone.

Figure 9-23 shows an example of autotune sequences upto a new setpoint, at
setpoint and down to a new setpoint. As can be seen the disturbance caused by the
autotune is not very significant.

In cases where nonlinear water cooling is used the Ch2_Linear should be set to
No(1) and the maximum cooling output used during the Autotune will be set to
20%. Note that the Delin_type parameter of the time proportioning output for this
channel has to be set to either D_800 or D_EM1: whichever appropriate for the
application. See the PC3000 function block manual for more details.

The tuner will compute the following parameters:

1.  P,Iand D: If either integral or derivative are set to zero the tuner
computes the parameters for P-only (if both are zero), PI (if D is set to
zero), PD (if I set to zero) and PID if none are set to zero. If the tuner
detects a delay dominant system it automatically turns the derivative
term off.

2. Relative Channel 2 Gain: This is set if dual channel PID is used
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(i.e.Output_Low is negative). This parameter is set to unity if the tuner
fails to complete successfully..

Process Value and Setpoint

100 200 300 400 500 600 700 800

Power Output
100 ' ' ' ' ' ' '
80

60

0 . T

0 100 200 300 400 500 600 700 800

Figure 9-23 PID_Auto autotune sequence

3. Cutback: Cutback_Low is set (if deemed necessary by the tuner) on a
tune upto a setpoint. Similarly, Cutback High is set (if deemed
necessary) on a tune down to a setpoint. No cutback is set during tunes at
setpoint unless the cutback value is lower than the newly computed
proportional band.

4.  Cycle Times: The cycle times are computed if their initial values are set
larger than 5 seconds. The tuner does not change these values if they are
set below five seconds.

5.  Adaptive Tune Parameters: The Autotune also sets the three adaptive
tune parameters: Trigger_Val, MTC, Q parameters for DRA
(Disturbance Response Analysis) and LSAT (Least Squares Adaptive
Tuner) respectively. See the section on adaptive tune for more details.

The tuner will not change the dead-zone (dead-band) parameter. Also if manual
mode, sensor break or track conditions are entered at any point during the
Autotune the whole sequence is aborted and no change is made to any of the
parameters.
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Note: The user must ensure the correct form of direct or reverse
acting control is used: the tuner does not make this decision.

The diagnostic parameters AT_State, and Zn_Stage indicate the appropriate stage
of the Autotune.

How to get the best results from Autotune

This section provides some tips on how to use self-tune at its best advantage and
how to avoid / minimise some problems:

AT_Atate Description

0 Reset

Initialisation

—_

Monitor Quiescent Noise

End of Monitor Noise

Start with New Setpoint

End of Startup with New Setpoint

Startup with PV at Setpoint

End of Startup with PV at Setpoint

Ziegler-Nichols Sequence

N (00N [Oosn AW (N

Calculate New Parameters

—_
o

Write Update Status

Autotune Aborted

—_
—_

—_
N

Autotune Completed

Table 9-3 The Autotune variable AT State
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Zn_Stage Description

0 Initialisation

1 Find peak PV & Reverse Output

Find PV crossing PV1

Find peak PV & Reverse Output

Find PV crossing PV1 & Test for dominant delay

Find peak PV & reverse Output or PV change

Find PV crossing PV1 & Adjust Trend and Output

Find Peak PV & Reverse Output

O | N | O AW N

Find PV crossing PV1 & Calculate Parameters

Table 9-4  The Autotune diagnostic variable Zn_Stage

1. Always attempt to select self-tune when the instrument is providing a
stable level of output and the process variable is fairly steady for the
best results (i.e. select selftune with the initial setpoint at process value
and then switch the setpoint to the new desired value). Only change the
setpoint (if needed) during the first minute wait stage.

2. If the start-up conditions of the process are always very similar and
there are no significant changes to the load characteristics then it is
necessary to perform self-tune only once and not every time the
process is turned on.

3. Tunes up to a setpoint in temperature control of extruders and furnaces
are usually more effective than tunes down to or at setpoints.

4. Autotunes with processes with time constants below 20 seconds or so
are not usually very successful, unless PID_Auto is moved to a faster
task interval. The tuning operation takes about 5 milliseconds out of
the task time. The task interval can not be usefully reduced by a factor
more than 2 or 3 compared to the 100ms task interval. When
increasing the task interval for the PID_Auto function block make sure
that the task interval is about two orders of magnitude smaller than the
process time constant. E.g. If process time constant is 100 seconds, the
task internal should be shorter than 1 second.

5. Do not use the Autotune with processes which have cyclic
disturbances. This may confuse the tuner in setting the PID values.

The tuner is disabled if IntegralHold is set.

Ensure that the right values of output limits are used. Do not change
the limits during the autotune phase.

8. Ensure that the process value is within the range measurable by the
sensor. Some sensors (e.g. pyrometers) are only useful over a limited
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range and below that they indicate their minimum value although the
actual process value is well below that value. When using multiple
sensors for different ranges make sure that the Autotune is performed
in the appropriate range.

0. Note that the tuning rules are optimised for extruder/ furnace
temperature control and tend to give quite tight and active control. If
such a response type is not suited to particular systems the parameters
must then be manually modified.

10. There are various timeout mechanisms built into the Autotune
sequence. If the process fails to respond in the prescribed manner the
tuner may go through one of these timeouts before skipping to the
sections of the sequence it is capable of completing and gives its best
estimate of the PID settings.

Tuning with valve positioners

The one shot tuning facility is also available for the valve positioner. The tuner
however does not set the valve update time,minimum on time and valve travel
time. Note that the valve travel time should be set to the actual value of the travel
time of the valve from one end stop to the other. Failure to do this causes the tuner
to set an incorrect proportional band setting for the controller.

Adaptive tuning

PC3000 function block also has two more tuners which unlike the one-shot
scheme operate continuously. These are DRA (Disturbance Response Analysis)
which in essence is a simple expert system examining the response curve of the
process variable to setpoint changes and external disturbances and LSAT (Least
Squares Adaptive Tuner) which is basically a variant of model reference strategy.
DRA performs the coarse tuning and LSAT the fine tuning. There is also an
overseer which coordinates the activity of these two tuners as well as providing
safety supervision for these tuners such as

setting limits on the PID parameters
ensuring that the parameter set is consistent

checking for loss of restoring action in the controller

Disturbance response analysis

This technique is based on continuous analysis of process-value waveforms as a
function of time, during operational closed-loop control. The actual responses
monitored are the error signals generated, when the control loop experiences a
disturbance. As control errors can be generated by process noise, external process
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disturbances and setpoint changes, it is helpful to be able to recognise these
specific sources, while evaluating the response to the disturbance. A fundamental
problem of the waveform analysis technique is that it may not have enough
information to be aware of changes of the initial disturbance.

The problem of noise is soluble by providing a means of measuring the noise
environment, during the Autotune test prior to initialising the adaptive tuner, and
then parameterising the noise filters. As mentioned earlier Autotune sets the
Trigger_Val parameter which should be roughly set to the peak to peak magnitude
of the noise level. This value can also be adjusted by the user. Setting the value too
low, results in the adaptive tuner being confused by the process noise and as a
result it will widen the proportional band setting and increase integral times to
compensate for this. If at all possible it is best to do an Autotune before an
adaptive tune. Otherwise, ensure that the Trigger_Val is at least set to the peak to
peak value of process noise.

The tuner monitors setpoint changes and it takes appropriate action when there are
changes of the setpoint. If the changes are too frequent the overseer disables
changes of PID parameters as it is then impossible to distinguish whether the
process value is oscillating as a result of frequent setpoint changes or the loop
tuning is poor.

DRA analyses the response of the process over a long enough period of time to
enable consistency checks to be performed on the measurement. This typically
amounts to a period of time commensurate with five or six integral times before
DRA is confident that the tuning needs proper adjustment.

[ Adaptation

Mechanism
Slow
Process
Setpoint Value
PID Process —>
Controller
Fast

Figure 9-24 A basic adaptive control scheme
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Process value, °F
N
N
o
-]
[(]
w

20 40 60 80 100 120

Time, min
Zone 2 Auto tune Manual No change Manual Adapt
setting setting
XP{%) 1.9 1.9 1.9 1.9
Tl(sec) 930 240 30 960
TD(sec) 152 60 10 160
Zone 4 Auto tune Manual Adapt Manual Adapt
setting
XP{%) 1.7 0.8 1.4 1.4 1.4
Tl{sec) 520 520 520 1800 613
TD(sec) 88 88 88 300 102

Figure 9-25 DRA adaptive tuning of a multizone extruder

The distinguishing feature of 'adaptive systems' is that there are two basic loops
present as shown in figure 9-24. The adaptation loop is at least an order of
magnitude slower than the PID feedback loop. It would therefore be unreasonable
to expect the adaptation loop to respond quickly to rapid process variations. For
example, pH processes go through rapid and large gain variations close to the
neutralisation region. A general purpose adaptive control scheme can not
compensate for these changes -- the gain of the pH process varies almost as rapidly
as the effluent flow variables and should therfore be treated as a bona fide state of
the process. Gain scheduling provides a far better solution here. Adaptive schemes
do however compensate for initial poor tuning over a sufficiently long period of
time (e.g. a few integral times) provided the underlying process is not varying too
rapidly.

Once the DRA tuner has been triggered by an error exceeding the Trigger_Val,
subsequent error peaks are measured in similar way to the Autotune (CLCM)
described in the previous section. Poorly tuned loops may exhibit a damped
oscillatory recovery from a disturbance such as the ones shown in figure 9-25.
DRA can then adjust these parameters using the rules described in the PC3000
function block manual.

One disadvantage with DRA and any other waveform analysis technique is that
identification of a poor control response should occur before the control response
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can be corrected. The method is extremely robust provided the trigger value is set

appropriately as previously described.

DRA may decide to include integral control even when it is not originally selected

but it will not tune the derivative, if either it is turned off by the user or by

Autotune.

DRA has two diagnostic parameters which are described in the tables 9-5 and 9-6.

DRA_State indicates the current state of DRA and DRA _Last the last change
DRA made to the control settings.

DRA_State Description
0 Allow Settle
1 Wait for Trigger
2 Find Peak 1
3 Find Zero 1
4 Find Peak 2
5 Find Zero 2
6 Find Peak 3
7 Find Zero 3
8 Find Peak 4
9 Find Zero 4
10 Find Peak 5
11 End on Zero 4 Abort
12 End on Peak 4 Found
13 End on Peak 5 Abort
14 End on Peak 5 Found
15 Prepare Update

Table 9-5 The states of DRA

PC 3000 Function Blocks
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DRA_Last Description

0 Not adapted

1 Reduced Damping

Increased Gain

Decreased Times

Increased Times

N |~ |W N

Decreased Gain

Table 9-6 The adaption of DRA

Setpoint and Process Value —
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Power Output
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Setpoint and Process Value
8 /\
6 //\’/
M Ve
2|
O L 1 1
0 50 100 150

_Power Output

10
SL\ /\(\

Ol | |
0 50

100 150

Figure 9-26 Schematic diagram of the least squares adaptive tuner
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The least squares adaptive tuner

LSAT is a model based tuning scheme which has a variant of the standard
recursive least squares estimator and it estimates the parameters of a predictor
model which are then used to set the PID parameters. LSAT operates as a fine
tuning mechanism in tandem with the DRA described in the preceeding section.

There are two parameters MTC (Model Time Constant) and Q (Control detuning
factor) which are used with LSAT. Autotune and DRA set these parameters
automatically. When the controller is in manual these values are set to one tenth of
the integral time and eight percent of the proportional band setting (in engineering
units). They can also be adjusted by the user though there is no need to do so in
practice unless the user has sufficient amount of experience and expertise of
LSAT. Briefly, increasing MTC has the effect of increasing the required closed
loop model time constant and increasing Q has a similar effect but through
reducing the loop gains. LSAT is deactivated if MTC is less than the task interval
in milliseconds divided by 100. For example for a PID_Auto instance on 100ms
task MTC must at least be set to 1 which in turn implies that integral time must at
least be 10 seconds.

Schematically, the control scheme is as shown in figure 9-34.

LSAT is used as a fine tuning mechanism and should therefore not be expected to
change the parameter set by Autotune or DRA by an enormous amount. Unlike
DRA, that operates only if errors are sufficiently large, it is operating continuously
and as such can make changes at any time. The overseer ensures that paramaters
are within specified ranges.

The resulting three tuners form the "Eurotherm's Composite Tuner" which is also
available with the 900EPC series of instruments.

LSAT like DRA may activate integral control when needed but will not activate
derivative if deactivated by the user or Autotune.

How to get the best results from adaptive tune
There are certain simple precautions which are necessary when using adaptive

control.

1. Wherever possible perform an Autotune before an adaptive tune. This
ensures that the starting PID parameters are far closer to their optimum
values than they would normally be. The disruption caused by an
Autotune sequence is usually no worse than a poorly tuned PID!

2. If an Autotune can not be performed make sure that trigger value is set
to some sensible value (typically the peak to peak value of the noise).

3. Do not use adaptive tune on processes with cyclic disturbances. If it is
needed to do so then ensure that the trigger value is set to the peak to
peak value of this disturbance.

4. Do not leave the controller in adaptive tune while changing the wiring,

disconnecting thermocouples or servicing the equipment. There is a
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loss or restoring action detector inside the algorithm which is designed
to detect such situations but the best policy is avoidance.

5. Like Autotune there is no point in attempting to use adaptive tune on
processes which have time constants less than two orders of magnitude
larger than the task interval of PID_Auto.

6. Note that the adaptive tuner does not adjust the dead zone in the dual
channel PID and the minimum on time, travel time and update time of
the valve positioner. The user has to choose these.

It is frequently only necessary to use the Autotune to reduce commissioning time.
Feedback control overcomes 90% of the problems -adaptation is really only
necessary for a small class of processes. For example, using a adaptive PI
controller on a process with long dead-time can not improve response times
significantly: proper dead-time compensation or system redesign is necessary here
not adaptive control. It is difficult to pin point under what conditions adaptive
control gives better results and under what circumstances worse. Suffice it to say
that continuous adaptive tuners are not a panacea for problem loops: a one shot
tuner will be more reliable on a noisy loop, and continuous retuning is often not
necessary.

Continuous adaptation to changing loop conditions is a different problem. Here the
user must understand that the adaptive tuner, when enabled, has absolute control
over the process and so he/she should exercise caution until there is a certain
degree of confidence that the process is benefitting from this. Adaptive tuners can
mask process problems. For example, fouling of pipes in a heat exchanger will
cause a gradual change in the heat exchange rates which will be compensated by
the controller to obtain optimum performance for the given conditions. If this goes
totally undetected the problem will only surface when it is too late thus making
proper regular maintenance harder!
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GAIN SCHEDULING

Gain scheduling is a simple though effective method of control. Most industrial
processes are nonlinear and as such a fixed set of PID parameters may not be
adequate for "optimum" performance.

It is sometimes possible to find auxilliary variables which correlate closely with
changes in the process dynamics. One can use these to adjust the controller
parameters to values which are more suited to the new conditions. The changeover
of the parameters can be either done continuously where the PID parameters (e.g.
proportional bands, integral and derivative times) area continuous function of the
auxiliary variable or in discrete steps where the region of operation is split into
several segments and PID parameters are adjusted as the auxilliary variable
crosses over from one segment to the next.

One drawback of gain scheduling is that it is an open-loop compensation of
feedback parameters. There is no feedback to compensate an incorrect schedule.
Another drawback is that the design may be time consuming. The regulator
parameters have to be determined for many operating conditions. The function of
Autotune mechanism described in the previous section may help reduce the length
of time during the design cycle.

The main advantage of gain scheduling on the other hand is rapid response to
process changes. There is no estimator and tuning transient which typically is at
least an order of magnitude slower than the response times of the loops itself.
Thus very rapid changes in the process can be catered for, very precisely.

Continuous scheduling

Consider a level control problem with a conical tank. Assume for the purposes of
this example that we are required to use a PI controller for reasons of steady-state
errors. This is very rarely the case with level control in practice but we assume it is
for the duration of this example. It is then easy to see that

The cross section area of the conical tank increases as square of the level of
the fluid;

The outflow of the tank increases as square root of the level of the fluid.

Figure 9-27 shows the response of the PI level controller to a series of equal
changes of the setpoint from 1 to 3, from 3 to 5 and subsequently from 5 to 7 units.
With a fixed PI (the bottom figure) control the response tends to become slower as
the level increases. By analysing the level control problem it can be seen that a
way to compensate for this is to narrow the proportional band with the increase in
the cross section area. Recall that the "gain" of the tank varies as inverse of the

level.
Pid.Prop_Band := 50 / (PV.Val * PV.Val);
Pid.Debump_Dis := 1;
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This ensures that we get consistent responses at different levels. See the top half of
figure 9-27.

Note that we have had to disable debumping of the PID during the gain schedule.
This is because every time a change to the proportional band setting is made the
controller goes through an automatic debumping procedure. The debumping
operation in this case disables the control altogether and the controller will never

get going properly!

Setpoint and Process Value
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Figure 9-27 Continuous gain scheduling
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Gain scheduling

Consider a heat exchanger. The temperature on the secondary side of the heat
exchanger is controlled by a valve position on the primary side. The gain and
process time constant of the heat exchange are functions of the flow in the
secondary.

The variations of the process can be compensated by setting up a gain schedule
against the flow of the secondary side of the heat exchanger. As the flow in the
secondary tubing increases the gain of the heat exchange decreases and the time
constant increases. A simple way of setting up the gain schedule for proportional
band setting and the integral time is via Autotunes at different operating conditions
and storing these values in a select function block.

One can setup three different segments of low, medium and high flow rates. One
can store the PI parameters in a Select REAL, Select_ TIME block, for example.
The wiring for such a setup is therefore

Pid.Prop_Rand := Pid_XP.Output;

Pid.Integral := Pid_TI.Output;

Pid_XP.Index := REAL_TO_DINT(IN := Flow.Process_Val/33.34) + 1;
Pid_TI.Index := Pid_XP.Index;

If all of the function blocks are on the same task then the order of execution is
guaranteed and therefore PID is ensured to use a consistent set of parameters. The
select function blocks will execute before the PID does.

Note that unlike the example in the preceding section debumping is not disabled.
This is to ensure that the switchover from one set of parameters to the other does
not create a bump in the output. Of course what is expected is that the gain
scheduling variable (i.e. flow) is not oscillating rapidly either side of one of the
boundaries. One may employ a low pass filter to ensure that the controller only
reacts to true changes in the flow.

Note also that scheduling need not be limited to P, I and D. Frequently, some other
parameter has to be scheduled, for example the relative cool gain. Consider an
environmental chamber where temperature is controlled from a few hundred
degrees celsius to minus 190 degrees celsius. Liquid nitrogen will provide very
efficient cooling when the process value is well above the liquid nitrogen
temperature but obviously is far less effective when the process value reaches -180
degrees, for example. In order to get commensurate type responses along the entire
temperature range the relative cool gain of the controller has to be scheduled
against either the setpoint or process value.

It may also be necessary to switch the structure of the controller. For example,
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when ramping is active it is frequently beneficial to have the derivative term acting
on the error and during regulation one switches back to derivative on process
value. Clearly, such changeovers are trivial in the case of PC3000.

Another way of setting up schedules is via different recipes. If the same equipment
is used to produce different brands of products then the recipe system can be used
for switching PID values as well as setpoints.
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SETPOINT PROGRAMMING

One of the requirements for a control system is good setpoint following. In many
temperature control applications it is required to follow a sequence of ramps and
dwells of various lengths. In PC3000 this can be achieved very easily through the
function of the ramp function block. The setpoint of the PID is wired to the output
of a ramp function block.

Pid.Setpoint := ramp.Output;

The reference profile is segmented to a series of ramps and dwells. Each of the
segments can then form a step of a macro in the sequence program whose function
is to generate the setpoint profile.

Assume that the output of the ramp is set to

SP1.Val and we require to ramp to SP2.Val in T.Val seconds. Then the ramp rate
is set in the following simple way

(SP2.Val - SPl1.Val) / TIME_TO_REAL(IN:= T.Val);
SP2.Val;

ramp.Rate
ramp.Setpoint :

The Recipe function block suite provides an excellent mechanism for storing a
variety of setpoint programs for different grades of products. It is a relatively
straightforward task to write a SFC macro which picks the correct inputs and
outputs from a series of recipe slave variables.

Overshoot inhibition

One of the problems associated with PI or PID control is that process value may
overshoot the reference at the end of a ramp. This is primarily due to the integral
action effects. There are several solutions available and depending on the
application area one or more of these are applicable to the problem at hand.

Use of PID_Auto overshoot inhibition scheme

The 'in-built' overshoot inhibition scheme of PID Auto function block is described
in the PC3000 function block manual. The following wiring activates the
overshoot inhibition.

Pid_Auto.Setpoint := ramp.Output;
Pid_Auto.Ramp_Rate :

ramp.Rate;

Pid_Auto.Ramp_Units:= ramp.Rate_Units;
Pid_Auto.Target_SP :

ramp.Setpoint;
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The Inhibiter parameter can then be adjusted to give the appropriate response. It
should typically be around 0.5.

The operation of the internal inhibition scheme is as follows. As in most cases the
overshoot is due to the accumulation effect of the integral term, the inhibition
scheme discharges the excess integral effect before the process value reaches the
target setpoint. The place where this discharge takes place is a function of the
Inhibiter value. This inhibiter value is set to a number between 0 and 1. Zero
implies inhibition is off. Figure 9-28 shows the response of PID to a ramp with
(bottom half) and without (top half) the overshoot inhibition activated. As can be
seen the response with the overshoot inhibition active is identical to the one
without until the process value gets close to the target.

9 1 Sefpoint and Process Value
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Setpoint and Process Value
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Figure 9-28 Overshoot inhibition in PID_Auto
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Use with PID function block

The actions taken by the internal overshoot inhibition scheme of the PID_Auto
function block may be too drastic (e.g. we require the control to be rate limited) at
the moment of the discharge of the integral term. If the proportional action only
works on the process value as opposed to the error the ramp response is unlikely to
overshoot but it will also be slowed down considerably. Typically, derivative
should also operate on error as opposed to process value to reduce the magnitude
of overshoot. Figure 9-29 shows the effect of the use of setpoint weighting
described later. It is possible to obtain the appropriate response for a process by
adjusting the relevant scaling factors.

2 1 Setpoint and Process Value
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Figure 9-29 Overshoot and PID structure
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PROCESS CONTROL

Cascade control

One of the most powerful tools in control system design is the use of cascade
control. It is quite common to have to deal with cases where it is possible to
measure some of the states of a process like temperatures, pressures and so forth
along the line. In extrusion the most common use of the cascade structure is the
use of deep and shallow thermocouples. In this way the effect of disturbances such
as the work heat, effect of the granularity of the plastic pellets or their chemical
composition, can be seen earlier from the thermocouple and can therefore be
compensated for quickly. There are a variety of other areas such as drying,
environmental chambers, control of processes with valves (e.g. cascade of flow
and composition) where cascade control is particularly useful. In furnaces it is also
quite common to have a cascade of load and air temperatures.

The task of appropriate wiring for cascade control in PC3000 is left to the
application developers as the extra flexibility allows more lattitude in the control
system designs unlike the restricted form of the 900 series of instruments. This
document describes some typical forms of wiring for cascade control of PIDs. It
should therefore be seen as a guideline rather than the only solution for developing
cascade control applications.

The basic setup

Slave PID.Setpoint:=Master PID.Output

Setpoint Ch1_Output
—>
Ch2_Output
—>
Master PV Slave PV

Master_PID Slave PID

Figure 9-30 The most basic cascade structure

In its most basic form cascade of PIDs consists of a wiring of the form shown in
figure 9-30. The only wiring here is

Slave_PID.Setpoint := Master_ PID.Chl_Output
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This of course has several drawbacks, namely
There is no mechanism to turn the cascade operation off.

The slave process value has to be in percentages because the Output of the
Master _PID function block is in percentages.

There is no limit on the slave setpoint.

When the slave is in manual, the master output is inconsequential and there is
a distinct posibility of integral windup and severe 'bumping' when the control
is returned to automatic again.

Figure 9-31 shows a more reasonable structure for cascade control. The following
modifications have been done on the basic structure:

1. The Output of the master PID is scaled to the slave loop units as
follows:
Slave_Span.Val := Slave PID.Span High -Slave_PID.Span_Low;
Scaled OP.Val := Master_ PID.Chl_Output * Slave_Span.Val/100 +

Slave_PID.Span_Low;

2. If the cascade control is on then this setpoint is limited by user defined
high and low limits. This can be achieved through the following
wiring, for example

Cascade Off

Master SP
—> Slave_SP
Slkave PV
—>

Master_PV Master_PID Skave PID

—» Track_Enable

Track_Value

Figure 9-31 A practical cascade structure

Slave_ PID.Setpoint := SEL_REAL( G:= Cascade.Val,

INO:=External_SP.Val,

IN1l:= SEL_REAL( G := Scaled OP.Val > HS.Val, INO :=

MAX REAL (INl:= Scaled_OP.Val, IN2 := LS.Val),
IN1 := MN_REAL(INl:= Scaled OP.Val

IN2:= HS.Val)));
External_SP is a user defined variable which can be used as a local setpoint.

3. In order to ensure bumpless transfer the master PID is set to track the
process value or setpoint of the slave loop i.e.
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Master_ PID.Track_Value := SEL_REAL(G := Slave_PID.Manual,
INO (Slave_PID.SetpointSlave_ PID.Span_Low) *100/Slave_Span.Val,

IN1 := (Slave_PID.Process_Val-
Slave_PID.Span_Low) *100/
Slave_Span.Val);

Master_PID.Track_FEnable := Slave_PID.Manual OR NOT Cascade.Val
OR SP_Limited.Val;

The master is set to track if
The slave is in manual.
Cascade is off.
The slave setpoint has hit the limits.

The check for setpoint being limited can be performed as
SP_ILimited.Val := Scaled_OP.Val>(HS.Val+EPS.Val)
OR Scaled OP.Val< (LS.Val-EPS.Val);

EPS.Val is a user variable holding a small value such as 0.0001. This is

necessary to ensure that rounding off errors do not lock the set up in
track mode ad infinitum.

Under many circumstances (e.g. cascade temperature control of a barrel zone) the
inner (slave) loop does all of the control activity and the outer loop is required to
work primarily in feedforward with a feedback trim to ensure that the steady states
are correct. Also what is required is that the temperature difference between the
primary and secondary variable does not become too large. For this reason it is
possible to employ the facility for setpoint or process value feedforward.

1. Setpoint feedforward is performed by setting the SP_FF_Enable flag in
the master loop and setting the required value of the trim in percentage.
The rest of the calculations are performed by the function block. Note
that setpoint feedforward is only available with heat only instuments.
This ensures that the output of the function block varies by the
maximum value of the SP_FF_Trim about the mean value set by

Master_ PID.Setpoint—Master _ PID.Span_ Low
Master _ PID.Span_ High — Master _ PID.Span_ Low

x100

This facility limits the difference between the master and slave
setpoints to a user defined maximum value. Consider a temperature on
temperature cascade loop. The span of both the primary (master) and
the secondary (slave) loop are set to 600 degrees, say. A setpoint of
450 degrees on the master is translated to 450/600 or 75% output level
for the master loop. If a trim level of 5% is chosen then the output of
the primary can vary between 70% and 80%. This scaled for the slave
(secondary) loop setpoint implies a maximum variation of 420 degrees
to 480 degrees for the slave setpoint. Changing the setpoint of the
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master to 500 degrees is followed by an immediate shift in the slave
setpoint by the appropriate amount.

2. In order to perform process value feedforward set PV_FF_Enable flag
and set PV_FF_Trim. The calculations are similar to that of setpoint
feedforward. PV feedforward is useful in delta temperature control.

Consider a batch reactor. It is typical to require a maximum
temperature difference between the jacket and batch temperature.
Process value feedforward can be used in this case where in effect the
slave controller, controls the difference between process values and the
master sets the base level of the main process value. Care must be
taken in tuning these controllers as there are positive feedback paths
which act to destabilise the loop in this configuration.

Tuners

In order to perform automatic tuning of the parameters of the PIDs in each of the
loops an additional set of wiring is necessary to ensure that the outer (master) loop
is aware of the conditions of the slave loop. Such a setup is performed in the
900EPC series of controllers and the block diagram is as shown in figure 9-32

Note that the variations on the setup of figure 9-31.
Track is also enabled when the inner (slave) loop is in Autotune

If the outer (master) loop is at steady-state then the monitor noise sequence in
the slave loop should not cause any changes in the output level during the first
minutes to avoid disrupting the state. For this reason if the absolute value of
the error is less than 1 percent of the span then the initial setpoint at the
begining of the slave loops monitor noise is set to its current process value.
There after during the first minute the setpoint can be changed to a desired
value for the Autotune.
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In some versions of the firmware Autotune sequence is fixed such that it
generates outputs between Output_High and Output_Low irrespective of any
other settings. For master loops with limited trims this may not be acceptable.
In order to overcome this problem during Autotunes the power output limts
Output_High and Output_Low must be set to limited values explicitly.

Note that:
1.
2.

Autotune should always be performed from the inner loops outwards.

It is possible to set both inner and outer loops to adaptive tune state
(Tune_Type = 4). However, for secure tuning the adaptive tuner
disables parameter updates if the setpoint is continuously changing in a
random manner. The adaptive tuner of the slave loop may therefore not
change its parameters if the master loop is very active.

Care should be exercised in the application of adaptive tune to the
master loop, as the adaptive tuner on this loop will attempt to
compensate for instabilities of the slave loop by adjusting the master
loop parameters.

Controller structure

The actual structure of the cascade control is very much an application specific
issue. There are however certain simple issues which have to be considered.

1.

Integral Windup: So long as the ouput of the secondary controller has
not hit any of the saturation limits there are no problems.

However, if the output of the secondary controller is at one of the
saturation limits for an appreciably long time then the integral of the
primary loop is very likely to windup. A simple solution to overcome
this problem is to inhibit integration in the primary loop when the
control in the secondary loop hits saturation using the integral inhibit
function. Another possible solution is to put the primary controller in
track when the secondary is at limit.

It is necessary to back-calculate the value of secondary setpoint which
would have just caused the control to saturate. This should be
reconverted to a percentage of the primary output and used as the track
value. This is more complicated than stopping integration which has a
similar effect.

PI and PD action: Ordinarily, it is unnecessary to apply full PID
control to both primary and secondary control loops. Usually, the main
aim is to have a sufficiently tight inner loop. This can be achieved with
proportional only or PD control. The derivative however must operate
on the secondary process value as opposed to the secondary error. If
the derivative acts on the secondary error the control will be far too
active because of continuous changes of the secondary setpoint (i.e.
primary control). The primary control should by the same token be PI
control to reduce the total activity of the control due to a possible
derivative action.
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3. Primary and Secondary Sensor Break: The sensor break strategy for a
multi-loop system may have to be quite different to single loop
strategy where the control output is set to some safe value. When the
inner loop sensor breaks it may be possible to continue with the outer
loop acting as a low gain single loop controller and vice versa. The
user programs can cater for a variety of safety mechanisms.

The basic operation

Typically both master and slave loops should be configured for setpoints tracking
process values when in manual. This can be performed by the SEL._REAL
function with Master_PID.Manual or Slave_PID.Manual as the gate. Note that this
is an extra requirement over and above those described in the previous sections.

Changing the slave to Auto causes the controller to initially retain its last output
value and the slave setpoint is set to the slave process value at that instant, thus
passing bumplessly from manual to automatic. A subsequent change to automatic
control in the master loop, causes the master output to be set to a value equivalent
to the existing slave setpoint, while the master setpoint is set at master process
value. Once the changeover to fully automatic cascade control has been achieved,
all changes to the process are made by changing the master setpoint.

Should manual control of the process be necessary, then putting the slave in
manual causes the slave output to be frozen at the last value until the slave output
is changed by the operator. While the slave is in manual, the master output is set to
track the scaled slave process value so that when the slave returned to auto both
master output and the slave setpoint are equal to the slave process value. The
master setpoint is however not affected.

If setpoints do not track process values in manual process 'bumps' may occur on
changeovers.

For safety reasons, manual operation must override any other control activity (e.g.
Autotune).

Ratio control

It is very rare that the loops of a control system are totally independent of each
other. Mixing and blending are the most obvious examples for this. Most basic
ratio applications control the ratio of one flow to another -- it should be
appreciated that many flow measurements are either noisy or heavily quantised, or
both. As a result input filters should normally be configured for all ratio
applications. Here, we basically have a single loop PID whose setpoint is derived
as

Pid.Setpoint := PV_Lead * Ratio_Gain + Bias;

Clearly, PV_Lead is the leading process value, Ratio_Gain itself can be either
fixed or adjustable and the whole thing could act as basic adjustment on a fixed
bias term.

Dosing applications are a natural extension of the basic ratio application, with
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optional control of the lead flow variable, requiring a second PID loop. The lead
flow is normally controlled to a fixed setpoint, although setpoint programming
may also be required depending on the application area. The dosing flow setpoint
is typically adjusted in proportion to the actual lead process value with an external
manual trim depending on some offline measurements.

Air/Fuel ratio control in burners is another obvious example. In this example, it is
common to have the air flow loop proportional to the fuel flow loop. Typically, the
air loop is tuned tightly to react rapidly and the fuel loop is tuned such that it
responds slowly to changes of setpoints, etc. This implies that the setpoint of the
air flow loop is always set to a fixed ratio from the process value of the fuel flow
loop. The simple setup of figure 9-33 shows a basic air fuel ratio loop.

Combustion is often required to be air rich in order to minimise the chance of
smoke/soot production in the flue, so the ratio trim can be used to adjust the ratio
over and above the stoicheometric value. To maintain an air rich atmosphere
however, the controller is required to switch between air lead when a rise in
temperature is demanded, and gas lead when reducing temperature. In this case,
both loops are tuned with similar reaction times. Typically, the fuel setpoint comes
from a master controller controlling the temperature of the furnace and an oxygen
analyser is used to trim the actual ratio so that the appropriate amount of excess
oxygen is present in the flue.

Desired Fuel Flow Actual Fuel Flow
_= Min Controller 9> Process -
N
Actual Air Flow
1/Rafio[®
> : Controller |  Pr >
| Mox — Ratio | PO—P ontroller ocess

T

Figure 9-33 A simple ratio control structure

Boiler manufacturers have designed their burners to be flexible regarding whether
oil or gas is being burned and provide simple switching between these fuels. This
problem can be overcome by having ratio and gain switching using select
functions in the simple case and using recipes in the more complicated cases.
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Caution

Care must be taken with rapid changes to fuel and air flow since
ratios which deviate substantially from the setpoint are potentially
explosive. The burners, in general have built-in safety
mechanisms but a certain level of security can also be obtained
through the user programs in software.

Tuning

Much like the cascade situation the user software should provide facilities for
engaging and disengaging ratio. Auto tune should typically be performed when
ratio is not engaged. In most cirumstances this means that auto-tune precedes
normal operation. Typically, this may have to be done with tighter limits on the
outputs of the function block during the Autotune.

Feedforward control

Feedforward like feedback is a very powerful tool in control of processes.
Feedback is in essence a retrospective type of control: the effect of disturbances
are known before the control system can react to compensate for the imbalance.
There are many occasions where it is possible to predict the effect of external
disturbances and compensate for these in advance. Consider control of heating,
ventilation and air conditioning systems in large buildings. There are many
external influences which are known or are measurable. The normal period of
occupancy of the building is relatively well known, the effect of solar gains are to
a large extent measurable, temperature and humidity of the air intake from
outdoors can be easily measured. Instead of putting the burden on feedback alone
it is possible to compensate for the effect of these using feedforward whereby the
control signals are a function of these external influences as well as the normal
feedback signals of room temperatures and humidity. Briefly, if the source of
external disturbance is known and can be measured accurately then a combination
of feedforward and feedback gives best results.

Unlike feedback there is no danger of instability with feedforward. There is a price
to be paid, however. Firstly, the complexity of the control scheme increases as the
number of feedforward signals increase: each one requires a transducer,
transmitter, probably some signal conditioning -- each of these add to the
complexity. Secondly, it is possible to have worse performance with feedforward
than without. This is because the feedforward action is an open loop action.
Consider the example of the HVAC (Heating Ventilation and Air Conditioning)
system. If the air intake is cold then the chillers should be set to work less actively.
If the feedforward compensation is to make the chillers work harder, then the
humidifiers and the heaters have to work that much harder to compensate for this
incorrect feedforward action! This implies that for reasonable feedforward control
good process knowledge and process models are required. Another important point
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is that given the fact that no model is perfect and that feedforward has no self-
correcting mechanism we must always combine feedforward with feedback.

Typically, there are two possible scenarios
Feedback with feedforward trim, or
Feedforward with a feedback trim.

The type of model one has to construct for either of the above cases is different.
Consider a simple temperature control in a rotary drier. The moisture content of
the incoming feed can for example be very simply measured by the load currents
in the belt drives which deliver the feedstock to the drier: the wetter the feedstock,
the heavier it is and the heavier the load on the belt, the higher the motor torques
and hence higher drive currents are necessary. This signal can then be used for
feedforward control. This can be potentially very useful as usually there is a
significant delay between application of gas and an increase in the temperature in
the drier.

If feedback is used alone, the incoming wet feedstock will have to first cause an
appreciable drop in the drier temperature and only then the control can begin to
react. But the influence of the corrective action of the control can not be seen until
the delay time of the drier has passed by and so forth. With feedforward corrective
action can be taken as the wet feedstock enters the drier. The short term
corrections are crucial to be reasonable as the feedback controller has no way of
correcting these and there is a potential for setting up oscillations if the short term
feedforward corrections cause overcompensation.

It is important to define the correct short term model. The medium and long term
situation is somewhat different. The temperature controller is designed to
compensate for medium/long term variations in a drier -that is why the controller
is there in the first instance. Therefore, it is unimportant if the long/medium term
models for feedforward are incorrect in this case, feedback will take care of that.
By long and medium we refer to time constants of the order of one closed loop
time constant to 5 closed loop time constants (note the relationship between the
integral time and closed loop time constant is about 3 to 1).

When feedforward is the main controller and feedback is the trim then it is
important to get the feedforward compensation right for medium terms effects as
well. The steady-state level can be left to the feedback trimmer. Typically in these
cases the PI trimmer is given limited authority too (i.e. the control output signal
has tight bounds).
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Figure 9-34 Combined feedforward and feedback control

Often it is possible to get a long way using fairly simple feedforward
compensators -- the marginal benefits of subsequent improvements become so low
that it is no longer economical to pursue that line.

Basic feedforward scheme

Figure 9-34 shows a typical block diagram of feedforward control. Note that the
feedback and feedforward control signals are added together and subsequently
processed to ensure such effects as manual/auto bumpless transfer, integral
desaturation, etc. Depending on whether internal trim limit is required or not the
following wiring can be used for feedforward control and a PID block.

No PID Trim Limit Required
Pid.Feedforward := FeedFW.Val;

PID Trim Limit is Required
Pid.Feedforward := FeedFW.Val;

Pid.Output_High := MIN_REAL(INl:= FeedFW.Val + Trim.Val,

IN2:=High_ Limit.Val);

Pid.Output_Low := MAX REAL(INl:= FeedFW.Val - Trim.Val,
IN2:=Low_Limit.Val);

Note that the limiting described above does not take the effect of relative channel 2
gain into account.

FeedFW is the compensation signal calculated for feedforward. There are several
issues which are important in the design and tuning of feedforward compenstors.
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Figure 9-35 Effect of disturbance and feedforward

Consider a straight forward temperature control in an environmental chamber. The
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effect of a temperature drop in the air intake on the final temperature is probably
not dissimilar from the example in figure 9-32. The top half of the figure shows
the response of the feedback controller to the step demand and the disturbance.
The bottom half shows the same feedback controller assisted by a lead
compensator as a feedforward controller. Note the marked improvement in the
disturbance rejection properties.

The response is typical of a large class of processes. There is a dead time during
which the effect of the change has not reached the sensor. Then there is a transient
period which can be approximated by some kind of a lag where the temperature
reaches its new steady state value. Each of the responses can be approximated by
three numbers: a gain (K), a dead-time (D) and a lag time constant (T). The
method of calculating these from the reaction curve is identical to that described
earlier. The feedforward compensator should therefore perform a back calculation
for computations of its control signal. There are three basic cases: dead-time from
the disturbance to the process value (Df) is larger than the dead-time from the
controller output to the process value (Dp), Df is equal Dp and finally Df is
smaller than Dp. Each case is dealt with in turn.

When delays are matched exactly there is no requirement other than attempting to
compensate for different reaction rates (i.e. time constants). This means that the
compensator should be of the form

Kf x (1+sTp)V
Kp x (1+5TY)

ug(t)=— (t)

which is a lead or a lag style compensator. See the next section for the realisation
of this transfer function in PC3000. Tp is the time constant of the control signal to
process value and Tf is the time constant of the feedforward to the process value.
KSs are the appropriate gains. Note that gains can be negative as well as positive.

When Dp is smaller than Df then the best policy is to delay the compensation for
the duration of the difference between the two dead-times and then proceed as in
the previous case. The compensator transfer function is therefore

_Kf x (1+sTp) _yps-pp)

Kp x (1+sTf) v(©

e 0=

The final case is where the effect of the feedforward is more rapid than the
feedback signal. There is nothing one can do regarding the initial transient: the
control signal can not reach the sensing point in time. The rest of the transient can
however be improved somewhat. Broadly speaking the numerator time constant
should be the control to process value reaction times and the denominator the
feedforward to process value reaction time. Feedback will also be strongly
effective in this case.

In many cases especially where time constants are commensurate a straight
forward gain is sufficient. As was discussed in the introduction it is usually better
to err on the side of caution. Overcorrecting is usually worse than not correcting
enough. Once the appropriate feedforward gain is measured from process data one
can reduce the feedforward gain a little: very good results can be obtained in this
way.
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As with all model based strategies the better the model the better the overall
performance but most of the time simple models can give very good results.

A note must be added regarding the methods of obtaining these models.

Feedforward signal measurable and manipulatable: This is a classical case in
most of multi-loop designs in control of processes.Feedforward is used in these
cases to decouple the loops as much as possible. Feedforward is taken from
either setpoints or controller outputs in these cases. It is possible to obtain
quite reasonable models (noise levels and process conditions permitting).

Feedforward signal not manipulatable: In these cases it is possible to run the
system with a feedback controller only for a sufficiently long length of time so
as to capture enough data which contains shifts of levels in the feedforward
signal. It is then possible to low pass filter the acquired data and take a
reasonable guess at the gains involved. The gain and time constant for the
control signal to process value can be obtained via open loop tests. This leaves
the denominator (lag) time constant. This will have to be done by trial an error
or by physical considerations.

Obtaining step response data as mentioned here is prone to large errors. By far the
most reliable approach is proper statistical time series analysis and application of
appropriate test signals. This however requires very sophisticated tools and an
extensive study period for it to be of any value.

More advanced control strategies

Alternative PID structures

It is very difficult to design a PID controller which has good disturbance rejection
properties (e.g. quarter decay ratio damping) as well as good reference following.
Such a design typically requires two degrees of freedom but the standard PID only
allows one. With PC3000 it is relatively easy to recover the extra degree of
freedom.

Typically, the controller is tuned to give good regulation performance (e.g. via
Ziegler-Nichols rules). PIDs tuned via Ziegler and Nichols are known to give poor
reference following -- frequently with unacceptable overshoot. Three solutions are
possible

1. Detune the controller parameters to give a compromise response for
both situtations;

2. Use ramps or pre-filters on the setpoint to reduce the magnitude of the
overshoot;

3. Use setpoint weighting. Setpoint weighting is discussed by Hang,
Astrom and Ho [5] and the control law is given by
1000 de

1
Output=———((a X SP-PV +—J-e t)dt+Td —
utpu Span X PB ( ) Ti ® dt )
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The derivative may be chosen to act on process value instead of the error as is
more usual in the process industry. Note that the difference between the normal
PID structure and this so-called two degrees of freedom version is the choice in the
weighting term a. This structure can be realised with the straight forward wiring
described below

Pid.Feedforward := b.Val * Pid.Setpoint;

b.val (a.Val-1.0)*10000/ (Pid.Prop_BRand* (Pid.Span_Low-
Pid.Span_High)) ;

PC 3000 Function Blocks 9-69



Process Control

Process Value and Setpoint

0.5}
0 L l l
0 100 200 300

Output Power

N N O 05
=1

0 100 200 300
Standard PID Control

Process Value and Setpoint

1 [\vr\ ]//\
0.5}
0 ] ] l
0 100 200 300
Output Power
101
st
6
4t
7k
\ I 1 ]

0 100 200 300
Refined PID Control

Figure 9-36 Standard and refined PID control
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The weighting b need only be evaluated anytime either a or the proportional band
setting or the span values are changed. Setting a to zero is equivalent to the
proportional term operating on the process value only.

Figure 9-36 shows an example of PID control tuned via the Ziegler-Nichols rules
and the refined method. Note that the setpoint response with the refined method is
far better but the good disturbance rejection is unaffected. Clearly, it is possible to
apply the same technique to the derivative term (i.e. part of the derivative could
operate on error and part on process value instead). Note, this is not as useful in
the case of the derivative term.

It is common to use the rate of change of setpoint as a feedforward term during a
ramp following. This can be done very simply by wiring the rate parameter of the
ramp and the feedforward with an appropriate adjustable gain.

Process value switching and tracking

It is quite common to have to control a particular variable (e.g. pressure) during a
particular regime of the machine and subsequently to switch over to another
variable (e.g. tension) during the next regime. This is also quite common with
sensors which have a limited range. The process value has to be switched from one
source to another depending on the conditions. Depending on the situation, a
variety of solutions are available.

Process Value Hard Switch Over: If one is simply switching between banks of
sensors and they all measure the same characteristics of the process then the
simplest solution is to perform the switch over with a SEL._REAL function. In
order to avoid a bump at the switch over it is important to set the Debump
parameter simultaneously.

Process Value Soft Switch Over: In many cases the switchover can not be
performed as a hard changeover operation described earlier. In these cases it is
possible to define a region where the two process values are fed to the
controller in proportion.

Pid.Process_Val := Weight.Val*ANINl.Process_Val + (1.0-Weight.val)*
ANINZ2.Process_Val;

In this way the switchover can be performed smoothly. The user variable
Weight can be adjusted linearly with changes in one of the process values.

PID Tracking Facility: Where the controller setting, setpoint, as well as
controller process values are switched it is usually easier to have two
controllers with one tracking the other while not active. This is achieved by
wiring the PID controllers back to back with a switch connected to the track
enable signal. Here we assume there are two single channel controllers.

Pid_1.Track_Enable := NOT Pid_1_Enable;
Pid_1.Track_Value := Pid_2.Chl_Output (* Feedback *);
Pid_2.Track_Enable := Pid_1_Enable; Pid_2.Track_Value

:= Pid_1.Chl_Output;

In many cases the selection is performed automatically. Consider a case where two
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variables say the jacket temperature and batch temperature (PV1) of a batch
reactor need to be controlled. The first PID attempts to control the batch
temperature at the desired setpoint and the second PID attempts to control the
jacket temperature at PV1 plus a fixed difference. The control actuator (heating
element) is driven from the PID which is providing the minimum output.

A similar situation arises with a valve used to control flow as well as pressure
upstream in a drum boiler. A simple way to achieve this is via the following

wiring.
Pid_1.Track Enable := SEL_BOOL(G:= Pid_1.Track_Enable,
INl:= O,
INO:= Pid_1.Chl_Output > MINOP.Val
(*Feedback *) + EPS.Val OR
Pid_1.Chl_Output < MINOP.Val (* Feedback *) -
EPS.Val);
Pid_1.Track Value := MINOP.Val (* Feedback *);
Pid_2.Track_ Enable := SEL_BOOL(G:= Pid_2.Track_Enable,
IN1:=0,
INO:= Pid_2.Chl_Output > MINOP.Val (*
Feedback *) + EPS.Val OR Pid_2.Chl_Output < MINOP.Val (* Feedback *)
- EPS.Val);
Pid_2.Track Value := MINOP.Val (* Feedback *);
MINOP.Val := MIN_REAL(IN1 := Pid_1. Chl_Output, IN2 :=Pid_2.Chl_Output);

EPS is a small positive number, and is used to avoid round-off problems with
floating point arithmetic. The sequence of operation will therefore be as follows. If
the output of the PID was not selected at the last sample the function block is put
in track state and is set to track the last minimum value. If the output of the
controller was selected on the other hand, the PID is set to choose its output
accordingly. If the controller was set to track at this sample, it will be pulled out of
track at the next. Such a setup mimics an incremental version of the PID controller
with each tracking the other.

It may have been easier to perform some of these decisions in a SFC step instead
of using function block wiring.

Lead, lag and lead-lag compensation

In many application areas, especially feedforward control as discussed in section
8-9 there is a need to have functions which perform lead or lag or lead-lag
compensators.

A lead or a lag block can be represented in the form

_ 1+5sT,

OP =
1+sT,

X PV
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This can be performed with the following wiring using the Lagl function block.

lagl.Input 1= PV.Val;
Gain.vVal := TIME_TO_REAL(IN:= Tl.Val)/TIME_TO_REAL(IN:=T2.Val);
OP.Val := Cain.Val * (PV.vVal - lagl.Output) + lagl.Output;

The "Gain" parameter need not be computed in wiring as it can be computed in the
SFC every time the time constants are adjusted. The Lagl function block instance
should typically be associated with a task with intervals less than T2/10. Setting
the initial condition for this is very simple. Lagl function block output tracks its
input in Track state, so engaging lead/lag compensator is equivalent to changing
the Track state to Limit state.

A lead-lag or a lag-lead block is simply cascade of a lag followed by a lead or vice
versa.

Model based control and delay compensation

PI and PID control are not suited to control of delay dominant systems. If tight
control is required frequently, a model-based strategy may have to be used.
Internal Model Control (IMC) of Morari and Zafiriou [7] provides a useful
framework for design of model-based control startegies within PC3000.

A simple smith prediction scheme

The Smith predictor scheme translated into the internal model control framework
is represented by the block diagram shown in figure 9-37.

Setpoint Process Value

+
>? > C Lead/Lag > Process >
R ompensaior

- Model —»2)

Low Pass
Filter

-y

Figure 9-37 A Smith predictor
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Note that the controller for the IMC design consists of three distinct parts

An Internal Model: The internal model is intended to replicate the process
value as closely as possible. Two causes of mismatch between the model
process value and the actual process value are plant/model mismatch and the
effect of load disturbances. Both of these are reflected in the error signal
which is fed back via the low pass filter. If there are no modelling errors or
disturbances then the feedback signal will be zero. This implies that the
reference following is then directly adjustable through the Lead/Lag
compensator.

Note that provided there is no modelling errors the closed loop stability is
guaranteed if the process, its internal model and the compensator are all stable.
Moreover, the resulting control scheme is guaranteed to have integral action if
the steady state gain of the L.ead/LLag compensator is set to be the inverse of
the steady state gain of the model. The model is typically first or second order
with dead-time. Although, in principle there is no reason why the model has to
be of low order or even linear. In fact, quite sofisticated models can be built
with the simple tools available.

A Low Pass Filter: This low pass filter is intended to filter out the effect of
noise on the process variable as well as providing a certain degree of
robustness to unmodelled dynamics of the process such as the effect of
nonlinearities and higher order dynamics. The time constant of the filter must
be large enough to reduce the noise level and small enough so as not to
degrade the disturbance rejection properties excessively. The steady-state gain
of the filter must be set to unity.

A Lead/Lag compensator: The lead/lag compensator is used to set the "closed-
loop" response time. The compensator typically takes the form of a
straightforward lead or lag compensator. Lead is used to speed the closed loop
response compared to the open loop and lag to slow the closed loop compared
to the open loop response. Typically, a lead with a factor of 2 between time
constants is used where the numerator has the same time constant as the open
loop process and the numerator has half the time constant.

A simple method of obtaining a reasonable model is by the reaction curve method
described eariler. Consider the step response in figure 9-38. The internal model of
the system is set to

K —sDm
M(s)=—2
(1+5T,, /2)

The implementation of the delay can be provided using the Shift_Real function
block. In this example, the estimated time delay is divided by 10 and this sets the
clocking rate of the output of the lead network in to the Shift Real function block.
The wiring for each of the separate section of the IMC design is as follows.
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Process Value
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Figure 9-38 A typical step response

Internal Model
OnDelay.Input := OffDelay.Q_Output;
OffDelay.Input := NOT OnDelay.Q Output (* Feedback *);
Delay.Clock := OnDelay.Q Output;
Delay.Process_Val := Lead.Val;
Model_1.Input := Delay.Output_11;
Model_2.Input := Model_1.0utput;

Time

The program time on each of the on and off delay timers is set to estimated delay
divided by 10. The time constant of each of the model lags is set to estimated time
constant divided by 2. Lead.Val is the limited value of the lead compensator given

below.

Lead Compensator

lagl.Input := Setpoint.Val - FilterErr.Output;
Gain.Val := TIME_TO_REAL(IN:= Tl1.Val)/TIME_TO_ _REAL(IN:=T2.Val);
OP.Val := (Gain.val * (PV.Val - lagl.Output) + lagl.Output)/

Mod_Gain.Val;
Lead.Val := MIN_REAL (IN1:= MAXOP.VAL,
IN2:= MAX_REAL(IN1:=MINOP.VAL,IN2:=0P.Val));

Typically, T1 is set to Tm and T2 to Tm/2

FilterErr is a lagl function block instance with a time constant set typically to

PC 3000 Function Blocks
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(Tm + Dm)/2

Low Pass Filter

FilterErr.Input := ActualPV.Val - Mod_Gain.Val * Model_2.Output;

Setpoint and Process Value
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Figure 9-39 Internal model control of a time delay process

Figure 9-39 shows the response of system using the simple IMC strategy. In this
example the process model does not match the actual process but the response of
the controller is very good. The response can be compared with a well tuned PID
for the same process as shown in figure 9-40. Clearly, the step response shows a
great improvement for the IMC control but the disturbance rejection properties of
the two schemes are similar.

Inferential control

Frequently, it is impossible to measure the control variables directly. The most
prominent example for this is the growth of "bacteria" in fermentation processes
for manufacturing products, such as penicillin. Measurements of the colour and
glaze in ceramics is another example. In many cases it is possible to develop a
dynamical relationship between the variable which cannot be directly measured
on-line and some other environmental variables such as temperature, pressure,
humidity, oxygen level, etc. In such cases it is possible to use PC3000 for the
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inferential control of this secondary variable.

Inference of the unmeasurable variable can be on the basis of static or dynamic
relationships. Static relations are like the required computations to infer mass flow
rates from volumetric flow rate computed from differential pressure measurements
across the orifice plate and temperature/ density relationship. Another example is
that of the relative humidity and dry/wet bulb temperature measurements.
Consider the case where there is a dynamic relationship of temperature and
composition in a product. If the dynamical model is computed empirically or from
some time series study then the Lagl and Shift_Real function block can be used
for realising the emulation/ prediction equations.

Setpoint and Process Value

] /7 N\ ST~

0 200 400 600 800

Power Output
08|

0.4(

0 200 400 600 800

Figure 9-40 Pl Control of a time delay process

Alternative control techniques

Discrete time control strategies

True discrete time or sampled data control design has received a lot of attention
with process control computers. Most feedback control problems can be solved
with the well tried and tested PID designs with adaptation, gain scheduling,
multiple loops, etc. When these fail model based strategies can tackle some of the
remaining problems. There are some class of problems, however, which render
themselves to sampled data strategies. Many measuring devices such as chemical
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analysers, gas chromatographs, some thickness or profile measuring instruments
produce measurements at fixed periodic intervals. Many other measurements are
communicated via communication links and are therefore by their very nature
sampled data. Others still, like peak pressure and temperature measurements in an
injection moulding machine are sampled data because of the characteristics of the
process. Certain computer algorithms such as optimisation, statistical analysis or
even some failure detection schemes are discrete time by their very nature.

With PC3000 it is a relatively straight forward task to develop discrete time
control related algorithms.

Consider a first order Infinite Input Response (IIR) discrete time low pass filter.
This can be very simply done by the wiring below.

pvf.val := PVE.Val + 0.1 * (Input.vVal - PVf.Val);

This is a low pass filter with a time constant of 1/0.1 or 10 samples. The actual
sampling interval of the filter is set by associating PVf with an appropriate task
interval.

A large number of discrete time control designs result in a difference equation of
the form

R(q™H)u(t)=T(g " Hw(t)~S(q™)y(t)

where R, T, and S are polynomials in the backward shift operator -1 and y(t), w(t)
and u(t) are the process value, setpoint and the control signal respectively. There
are many ways of implementing such schemes. A simple way of doing this is by
having three instances Shift Real function block, one for each data stream of
process value, setpoint and output.

OnDelay.Input := OffDelay.Q Output;

OffDelay.Input := NOT OnDelay.Q Output (* Feedback *);
Y.Clock := OnDelay.Q Output;

Y.Process_Val := PV.Val;

W.Clock := OnDelay.Q Output;

W.Process_Val := Setpoint.Val;

U.Clock := OnDelay.Q Output;

U.Process_Val := OP.Val (* Feedback *);

OP.Val := (T1l.Val * W.Output_1 + T2.Val * W.Output_2 +

R2.Val * U.Output_1 + R3.Val * U.Output_2-
S2.Val * Y.Output_1 + R3.Val * Y.Output_2)/R1l.Val;

The sample interval in this case is set by the Prog_Time variable in the on delay
and off delay timers. Dahlin style controllers can be realised in this way.

One area where sampled data control is particularly useful is with systems with
variable production rates. Clearly, as the production rates increase or decrease the
time scales and sometimes gains of the process under control change too. Variable
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dead-times frequently cause serious problems for control system design. With such
discrete time strategies it is possible to sample with respect to production rate as
opposed to time. This means that with careful design it may be possible to convert
a problem which in essence is time-varying to a position invariant one, for
example. Concentration control in a pipe is an example where sampling interval
can be set to be inversely proportional to the flow. As the flow increases the
sampling interval decreases and vice versa. The basic discrete time controller need
not change and therefore a potentially difficult problem can be solved in a simple
way.

Simple adaptive mechanisms

Currently, PC3000 does not provide general purpose function blocks for building
adaptive mechanisms in controllers. It is, however, possible to program simple
application specific gradient algorithms for some parameter adaptation.

The general equation of discrete parameter adaptation is
0(t)=0(t—1)+kI(t) e (t)

where q is the parameter set, k the adaptation gain, A is the data vector, (E is the
error between the actual and predicted value. It is quite straight forward to set up
such a simple update equation.

Consider the following predictor equations:
y(t+1)=gu(t)+gu(t-D+f,y(t)+f,y(t-1)

The calculations can typically be done in several consecutive steps of a macro so
that the load of computations is more evenly distributed. The ST generatared by
the programming station for the above example is given below.
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(* MACRO : MAIN *)
INITIAL_STEP MAIN : MAIN__ACTION(N) ; END_STEP

S Start
T1
| ============i============J============]1
m Monitor m Control m Alarm m UsrInfce
l============l============l===========T1
End

*)

(* MACRO : Control *)

STEP Control : Control_ ACTION(N) ; END_STEP
ACTION Control_ ACTION

(*

C GetData

T
|
ResetTim
T1
|
NewPars
T1
|
CompPred
Tl
|
> GetData
*)
(* CONTINUQUS *)
INITIAL_STEP GetData : GetData__ ACTION(N) ; END_STEP
ACTION GetData__ ACTION

Y Vval := load.Main_PV ;
END_ACTION

TRANSITION
FROM GetData
TO ResetTim

Watch.Elapsed_Time >= SampTime.Val ;
END_TRANSITION
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(* SINGLE SHOT *)
STEP ResetTim : ResetTim_ ACTION(P) ; END_STEP ACTION ResetTim__ ACTION
Watch_Reset = 1(*On*) ;
(* Prediction Error Equation *)
Error_Val := Y.Val - Yhat.val ;
(* Denominator of the Update Equation *)
Denom_Val := Ul.val * Ul.val + U2.Val * U2.Val + Y1l.val *
Yl.val + Y2.Val * Y2.val + 1.0 ;
(* Compute Update Gains *)

K_Val := SEL_REAL( G := ABS_REAL( IN := Error.Val ) <
Error.Max Val AND ABS_REAL( IN := Error.Val ) >
Error.Min_Val , INO := 0.0 , IN1 := Error.vVal *

Gain.Val / Denom.Val ) ;
END_ACTION

TRANSITION

FROM ResetTim

TO NewPars
:= 1; (* NULL transition - default TRUE *)
END_TRANSTITION

(* SINGLE SHOT *)
STEP NewPars : NewPars_ ACTION(P) ; END_STEP
ACTION NewPars_ ACTION

Watch_Reset := 0(*Qff*) ;

(* Update the Parameters *)

Gl_val = Gl.val + K.val * Ul.val ;
G2_vVal = G2.val + K.val * U2.Val ;
Fl_val := Fl.Val + K.Val * Yl.val ;
F2_val := F2.Val + K.Val * Y2.val ;

(* Limit the Parameters *)

Gl_val := MAX_REAL( IN1 = Gl.Min_Val , IN2 := MIN_REAL(
INl := Gl.Max_Val , IN2 := Gl.vVal ) ) ; G2_val
= MAX REAL( IN1 := G2.Min_Val , IN2 := MIN_REAL(
INl1 := G2.Max_Val , IN2 := G2.Val ) ) ; Fl_vVval
= MAX REAL( IN1 := Fl.Min_Val , IN2 := MIN_REAL(
INl := Fl.Max_Val , IN2 := Fl.vVal ) ) ; F2_Val
= MAX REAL( IN1 := F2.Min_Val , IN2 := MIN_REAL(
INl := F2.Max_Val , IN2 := F2.Val ) ) ; END_ACTION
TRANSITION

FROM NewPars
TO CompPred
:= 1; (* NULL transition - default TRUE *)
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END_TRANSITION

(* SINGLE SHOT *)
STEP CompPred : CompPred_ACTION(P) ; END_STEP
ACTION CompPred ACTION :

(* Compute the Control *)

Yhat_val := G2.val * Ul.val + Fl.val * Y.Val + F2.Val *
Yl.val

U_val := ( W.Val - Yhat.val ) / Gl.val ;

U_vVal := MIN_REAL( IN1 := MAX REAL( IN1 := U.Val

, IN2 := U.Min_Val ) , IN2 := U.Max Val )

; (* Store the Data *)

Yhat_val := Yhat.val + Gl.val * U.vVal ;

U2_Val := Ul.val ;

Ul_val := U.Val ;

Y2_Val := Yl.vVal ;

Y1l Val := Y.Val ;
END_ACTION
TRANSITION

FROM CompPred
TO GetData
1; (* NULL transition - default TRUE ¥*)

END_TRANSITION

END_ACTION (* Control_ACTION ¥*)

Multivariable control

It is a relatively straight forward task to build a multi-variable control system using
PC3000 function blocks. The PC3000 function blocks can be interconnected to
construct complex control systems.

The multivariable controller need not be limited to a series of single loop
controllers. Although, in practice a large number of problems can be solved that
way. A mixture of model based and classical techniques can be applied here to get
the best results. Feedforward can also be used for problem loops. Multiple rate
designs are also catered for via the use of the PC3000 tasking system. The
communications capability of PC3000 enables discrete instruments to be
integrated into the overall design. This also increases the total integrity of the
system.

Irrespective of the ultimate design strategy adopted it may be beneficial to
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examine the level of interaction in the process before attempting to design a
complicated control system. This is usually done by computing the "Bristol’s
relative gain array". This is fully explained in reference [6,7,8]. Computation of
the static and dynamic relative gains can be performed in a variety of ways. The
Bristol’s relative gain is defined approximately as

Incremental Gain of the channel assumming all other loops are open
Incremental Gain of the channel assumming all other loops are closed

For a more precise definition see [8]. Clearly, if there is no interaction between
channels then the relative gain will be 1: there is no difference whether other
process values are kept constant or are allowed to vary -- they do not influence this
channel anyway. Mathematically this means that

N
PV, = Z K;; X OP; (InOpen Loop)

i=1

N
OP; = z H;; XxPV; (InClosed Loop)

i=1

Without proper multi-variable compensation care is necessary regarding the effect
of interactions. Briefly,

Loop pairing has to be done with elements corresponding to relative gains close to
unity;

If the appropriate relative gain is less than 1 then integral time and proportional
band settings may have to be increased;

If the appropriate relative gain is greater than 1 then only proportional bands may
need to be increased;

If the apppropriate relative gain is negative then there is a strong possibility of
inverse response behaviour and the action of the controller may have to be
reversed. Extra care has to be taken here. Loop integrity may be lost.

Channels which have very large (in absolute value sense) relative gains are
problem areas. The implication is that the process values can not be set
independent of each other. There is a significant directionality present in the
process.

Relative gain arrays give a clear and immediate indication of whether;
The control problem is likely to be troublesome;

The loop pairing is sensible.
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For problem areas more advanced techniques such as feedforward compensation,
observer based designs, or any of the extensive variety of control design
methodologies may need to be applied. Realisation of feedforward and model
based designs is discussed in the previous section.

Here we outline the case of a simple observer based controller for a process with 2
inputs, 2 outputs and 3 states is shown as an example.

Assume that the controller equations are

x(t)= Ax(t)+Bu(t)+K;y(t)
u(t)=U_(t)+ K, x(t)

x is the observed state, y is the array of process values and u the control outputs.

Kc are typically designed off-line using some CACSD (Computer Aided Control
System Design) package and are transferred for realisation in PC3000 as are the
elements of the state matrices. Kc and Kf should typically be designed to give
some desirable properties such as stability, robustness and reduced high frequency
coupling and Uc is then the output of PI controllers on each of the channels to get
good steady state accuracy. If in addition trapezoidal integration is used we have

SX1.Val:= all.val * X1.val + al2.vVal * X2.vVal + al3.val * X3.vVal

+ Dummy.Val * 0ld_SX1.Val + bll.vVal * OPl.Val (* Feedback *)
+b12.V11 * OP2.Val(* Feedback *) + KFll.val * PV1l.Val
+ KF1l2.Val * PV2.Val;

01d_SX1.Val:= SX1l.Val(* Feedback *);
X1l.Val := X1.Val + h.val * (SX1.Val + 0ld_SXl1l.val) / 2.0;
OPl.Val:= OP1_Rar.Val + KCll.Val * Xl1.vVal + KCl2.val * X2.Val +

KC13.Val * X3.Val;

The variable Dummy is used to create an algebraic loop in the calculation so that it
is possible to force an order in the calculations done via wiring (in most instances
these calculations are done in a step and as such the order is fixed). Dummy
variable is set to zero. Variable h is the sample interval of the task. Clearly, if the
designs are done in discrete time then tasking can be used to fix the sample
intervals. The additional error and safety constraints usually available for control
are missing but can be added by the user when needed.

PC3000 provides facilities for the implementation of control system
methodologies in a very simple and safe way. It is possible for example, to devise
control systems which use an observer based design and have a standard PID
backup with say the appropriate PIDs in track mode when the Multiple Input
Multiple Output (MIMO) controller is active. In the situation where the "new"
strategy is not as successful, the operators can switch to the "conventional"
scheme which is known to work.
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Figure 9-41 PID Function Block Diagram (continued)
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Functional Description

The PID function block implements the proportional plus integral plus derivative
control algorithm which is also used in Eurotherm's 900 series control instruments.
The basic PID algorithm can be represented by the equation:

10000 1 o 4EW
Output = Et [ | |
P (Span *Prop_Band )( (t) + integral | E(t).dt + Derivative g )

where E (t) is given by Setpoint - Process_Val and Span is given by Span_High
- Span_Low. In the PC3000, this basic algorithm is supported by additional
functionality to improve the control performance and to enable the function block
to be configured to control a wide range of systems. In the description of the
function block's operation the parameters have been grouped together under the
common functional classifications of Configuration, Dynamic Input, Control,
Output Related and Diagnostic.

Configuration parameters are those which affect the structure of the controller and
need only to be set during the initial design.

Function Block Attributes

TYPe: e 20 38

Class: ..coveeceeeeereeeeeeeereeeenns CONTROL

Default Task: ...................... Task 2

Short List: c...eeeeneeeeieiiiiinnes Setpoint, Process_Val, Manual, Output

Memory Requirement:........ 268 Bytes
Execution Time: ................. 1.17 ms for single output operation

1.40 ms for dual output operation.

Dynamic Inputs are those which may typically change frequently during the run
time of the function block. Control related parameters affect the turing of the
loop. 'Output’ Related parameters are those concerned directly with the Output
stage of the block. Finally, Diagnostic parameters give information regarding
various stages of calculation within the block.
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Parameter Descriptions

Break Output: Configuration Manual: Control
Ch1 Output Manual_Reset: Control
Ch2 Output Nerror: Diagnostic
Control_Sig: Diagnostic Output: Output
CS_Pre_Limit: Diagnostic Process_Val: Dynamic Input
Cutback_High: Control Prop Band: Control
Cutback_Low: Control PV_FF _Enable Dynamic Input
Debump: Dynamic Input PV_FF_Trim Dynamic Input
Debump_Dis: Dynamic Input Sensor_Break: Dynamic Input
Deriv_On_PV: Configuration Setpoint: Dynamic Input
Deriv_Out: Diagnostic Span_High: Configuration
Derivative: Control Span_Low: Configuration
Direct: Configuration SP_FF_Enable: Dynamic Input
Error: Diagnostic SP_FF_Trim: Dynamic Input
Feed Forward: Dynamic Input Status: Diagnostic
Feedback: Diagnostic Zero_Deriv: Control
Integral: Control
Integral_Hold: Control
Integral_Out Diagnostic

Table 9-7 Parameter Classification
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Figure 9-42 PID Functional Block Diagram

Configuration Parameters

For optimum operation, the PID function block must be configured to the type of
control problem that it is to be applied to. This configuration is performed by
appropriate setting of the input parameters.

Span_High and Span_Low.

Span_High and Span_Low define the maximum and minimum limits of the
working range of the function block. Generally these are set to values which
represent physical boundaries in the operation of the process, such as the
calibrated range of a transducer, or the safe limits of a pressure vessel. The
proportional band of the PID algorithm is defined as a percentage of the span of
the function block, which is found by subtracting Span_Low from Span_High.
PV subject to limits of Span High +10% and Span Low -10%. Setpoint subject to
limits of Span High and Span Low -. If the Process_Val or setpoint move
outside the span the function block will enter a sensor break condition. Output will
take the value set by the Break_Qutput parameter.
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Direct

Direct defines whether the function block is direct acting or reverse acting. If the
function block is direct acting, the Output will tend to increase if the Process_Val
is greater than the Setpoint. If the function block is reverse acting, the Qutput will
tend to increase if the Process_Val is less than the Setpoint.

Deriv_.On_PV

Deriv_On_PV defines whether the derivative action is responds to changes to
Process_Val only (On_PV (1)) or to changes to the difference between the
Setpoint and the Process_Val (On_Err (0)).

Break Output

Break_Output defines the output level to which the function block will default
when a sensor break condition has been detected. This is either triggered by
Sensor_Break being set to Break (1), or by the Process_Val moving outside the
span of the function block + 10% or setpoint moving outside span

Dynamic Input Parameters

Dynamic inputs to the function block include those whose values can be expected
to be continuously changing, such as the Process_Value and those for which a
change in value can be expected to occur at any time by either the sequence
program or changes in process conditions, such as a Sensor_Break.

Setpoint and Process Val

The Process_Val is the controlled variable of the function block and the Setpoint is
the target value against which the Process_Val is controlled. The PID algorithm
acts to reduce the difference between the Setpoint and the Process_Val to zero.

Sensor Break

The sensor break input provides a trigger which can be used to set the function
block into a sensor break condition. When the function block is in sensor break,
the Output will be set to Break_Output and the PID algorithm will be disabled. On
leaving the sensor break condition, the algorithm will hold the output at
Break_Output for sixteen samples, to ensure that the sensor has been properly re-
acquired.
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Debump and Debump Dis

Debump functionality is employed by the function block to ensure that changes to
operating conditions or control parameters do not result in sharp deviations of the
Output signal. In the PC3000, debumping is automatically carried out whenever
changes are made to Prop_Band, Derivative, Span_High, Span_Low,
Ch1_Ch2_D_B, Rel_Ch2_Gain, or when the mode of the function block is
switched between Manual and Auto. The parameter Debump can be used to trigger
debumping for other changes, such as changes to the Setpoint. Debump_Dis can
be used to disable the debump functionality, which will allow the Output to "kick"
in response to changes in the parameters listed above.

SP_FF _Enable and SP_FF Trim

SP_FF_Enable is used to enable Setpoint feedforward functionality, which is
generally employed when the function block is being used as part of a cascade
control application. SP_FF_Trim is used to limit the peak level of the setpoint
feedforward trim term. The units of SP_FF_Trim are in percent of the span of the
Output.

PV_FF Enable and SP_FF Trim

Are used when PV feedforward is required in cascade. The functionality is just as
setpoint feedforward with process value replacing the setpoint.

Feed Forward

This is added directly to the output of the PID algorithm, before the output limiting
and dual output conversions are performed.

Control Parameters

The function block has several parameters which are not intended to be changed
dynamically, but instead control the operation of the algorithm. These include the
tuning parameters, such as Prop_Band, as well as booleans which are used to
change the mode of operation.

Manual

Used to select whether the function block operates in Manual or Auto mode. In
Manual mode, the PID algorithm is disabled and the value of Output is taken
directly from its input. In Auto mode the full controller functionality is active.
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PropUnits (Version 3.00 onwards)

PropUnits is used to define whether the Prop_Band is defined as a percentage of
the controller span (PctSpan (0)) or in engineering units (EngUnts (1)).

Prop_Band
Prop_Band is the proportional band of the PID control algorithm.

Prior to Version 3.00, the proportional band could only be defined as a percentage
of span. The engineering units mode was not supported.

If PropUnits is set to a percentage of span (PctSpan (0)), the proportional band is
defined as the percent of the total span of the controller for which a control error
will produce an output signal equivalent to the maximum output of the instrument.
For example, if Span_High is 1000, Span_Low is 0, Setpoint is 500,
Process_Val is 490 and Prop_Band is 1%, a proportional only reverse acting
controller will produce an output of +100%, because the control error will be 10
units, which is one proportional band.

Note:- When defined as a percentage of span, the the proportional
gain is given by:

10,000
(Span_High - Span_Low) *Prop_Band

Gain =

If PropUnits is set to engineering units (EngUnts (1)), the proportional band is
defined as the magnitude of the control error which will produce an output signal
equivalent to the maximum output of the instrument. For example, if Setpoint is
500°C, Process_Val is 495°C and Prop_Band is 5°C, a proportional only reverse
acting controller will produce an output of +100%, because the control error is 5°C
which is equal to one proportional band.

When defined in Engineering units, the proportional gain is given by:

Gain = 100
Prop_Band

Integral

Integral is the integral time constant of the PID control algorithm. Integral time is
defined as the time period in which the part of the output signal due to integral
action increases by an amount equal to the part of the output signal due to
proportional action, for a constant error state.
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Derivative

Derivative is the derivative time constant of the PID control algorithm. Derivative
time is defined as the time interval in which the part of the output signal due to
derivative action increases by an amount equal to the part of the output signal due
to proportional action, when the control error is changing at a constant rate.

Manual_Reset

Manual_Reset is only active when Integral is set to zero. It provides an offset to
the Output, which can be used to reduce the control error to zero when integral
action is not employed.

Cutback High and Cutback Low

Cutback can be employed to reduce the amount of time it takes the Process_Val
to respond to large changes in Setpoint and to limit the overshoot that can occur
during the transient period. Cutback_High operates when the Process_Val is
initially greater than the target Setpoint and Cutback_Low operates when the
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Process_Val is initially less than the target Setpoint. The units of Cutback_High
and Cutback_Low are engineering units. Cutback operates by forcing the QOutput
to its appropriate maximum or minimum limit in response to a Setpoint change
which is greater than the cutback band. As the Process_Val approaches the
Setpoint, the control error (Setpoint - Process_Val) reduces to less than the
cutback value and normal control is resumed.

Track Enable and Track Value

Track_Enable allows the PID algorithm to be disabled and the Output signal to
be read directly from Track_Value. These parameters are generally used when the
function block forms part of a cascade control application.

Zero Deriv

Zero_Deriv can be used to force the derivative output to zero. It is automatically
cleared by the function block after one sample.

Integral Hold

Integral_Hold enables the integral output to be frozen at its current value. It will
remain constant throughout the period that Integral_Hold is enabled.

Output Parameters

Output, Ch1_Output and Ch2_ Output

iZhe Ontput 100 4 iZhl _Output
. El:l | .-..l-.__.'
.-25 | .-._,-'.l-
: L] 1 L] I:i- .-'- 1 L L] :
-100 -50 25 0 25 S50 100
matpat

Figure 9-43 Dual Output Relationship, with Unity Rel Ch2_ Gain and zero

Ch1_Ch2 D B
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The PID function block channel can be configured for either single or dual channel
operation. In single channel operation, the control is on-Output, which is limited
within the range + 100 % to O % by the parameters Output_High and Output_Low.
Dual channel operation is designed for systems such as heat-cool applications, in
which negative values of Output must be output to a refrigeration unit as absolute
values to increase the refrigeration rate. For dual channel operation Output_Low is
set to - 100%.

Output_High and Output_Low

Output_High and Output_Low define the upper and lower limits of Output They
must both be set within the range -100% to +100%, with Output_High being
greater than or equal to Output_Low. When the function block is being used for
dual output operation, Ch1_Output and Ch2_Output are related to Output as
shown in Figure 9.2, with Output being bounded by Output_High and
Output_Low.

Rel Ch2_ Gain and Ch1_Ch2 D B

When the function block is being used for dual channel control, the full
relationship between Ch2_Output and Output is given by:

Ch2_Output = (Output + Ch1_Ch2_D_B) * Rel_Ch2_Gain

Rel_Ch2_Gain is intended for use in non linear dual output control situations,
such as heat / cool systems, to compensate for the differing gains of the equipment
being driven by the two output channels. Chl_Ch2_D_B introduces a deadband
between the two output channels, which can either be set to a positive value to
provide a region in which neither channel is active, or to a negative value to
provide a region of overlap in which both outputs are active.

Output Rate and Out Rate En

Output_Rate can be used to limit the maximum rate of change of Output per
second. It is enabled by setting Out_Rate_En to Yes (1). Note that Output_Rate
affects the rate of change of Output directly, so that the rate of change of
Ch2_Output will be modified by the Rel_Ch2_Gain.

Diagnostic Parameters
{1} CS_Pre_Limit

This is the output of the PID controller after the Feed_Forward has been added,
but before Output limiting has been performed.
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Control_Sig

Control_Sig is the sum of the proportional, integral, derivative and feed forward
components after being high, low and rate of change limited, but before the dual
output relative gain and deadband have been added.

Integral_Out and Deriv._Out

Integral_Out and Deriv_Out are the outputs of the integral and derivative
components respectively.

Feedback

Feedback is the value of the signal which is fed back into the PID to indicate the
actual signal that is output by the controller.

Error
Error is the difference between the Process_Val and the Setpoint,
(Process_Val - Setpoint).

Nerror

Nerror is the output of the proportional component of the function block.

Status

Status provides an indication of the function of the PID function block. it can have
eight possible states:

Ok (0): The function block is operating normally

SnsrBrk (1):  An external sensor break has been detected
PV_High (2): The Process_Val is greater than Span_High +10%
PV_Low (3): The Process_Val is less than Span_Low -10%
SP_High (4): The Setpoint is greater than Span_High
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SP_Low (5):
GainNeg (6):

GainHi (7):

The Setpoint is less than Span_Low

The Prop_Band has been set with a negative value, or Span_High
has been set less than Span_Low

The Prop_Band has been set with too small a value or the span of
the function block has been set too small, resulting in a very large
gain.

PC 3000 Function Blocks
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Parameter Attributes

Name Type Cold Read Write Type Specific
Start Access Access Information
Break Output REAL 0 Oper Oper High Limit Output_High
Low Limit Output_Low
Ch1 Ch2 D B |REAL 0 Oper Oper High Limit 10
Low Limit -10
Ch1_Output REAL 0 Oper High Limit 100
Low Limit The higher of 0
or Output_Low
Ch2_Output REAL 0 Oper High Limit The lower of O or
Low Limit Output_High
-100
Control_Sig REAL 0 Config High Limit 100,000
Low Limit -100,000
CS_Pre_Limit REAL 0 Config High Limit 100,000
Low Limit -100,000
Cutback High REAL 0 Super Super High Limit Span_High
Low Limit 0
Cutback Low REAL 0 Super Super High Limit Span_High
Low Limit 0
Debump BOOL No (0) Super Config Senses No (0)
Yes (1)
Debump_Dis BOOL No (0) Config Config Senses No (0)
Yes (1)
Deriv_On_PV BOOL On_Err (0) |Config Config Senses On_Err (0)
On_PV (1)
Deriv_Out REAL 0 Config High Limit 100,000
Low Limit -100,000

Table 9-8 PID Parameter Attributes
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Name Type Cold Read Write Type Specific
Start Access Access Information
Derivative TIME 50s Oper Oper High Limit 01d_03h
Low Limit 0
Direct BOOL No (0) Config Config Senses No (0)
Yes (1)
Error REAL 0 Super High Limit 100,000
Low Limit -100,000
Feedback REAL 0 Config High Limit 100,000
Low Limit -100,000
Integral TIME 5m Oper Oper High Limit 01d_03h
Low Limit 0
Integral_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
Manual BOOL Manual (1) |Oper Oper Senses Auto {0)
Manual (1)
Manual_Reset REAL 0 Oper Oper High Limit 100
Low Limit -100
Nerror REAL 0 Super High Limit 100,000
Low Limit -100,000
Out_Rate En BOOL No (0) Oper Config Senses No (0)
Yes (1)
Output REAL 0 Oper Oper High Limit Output_High
Low Limit Output_Low
Output_High REAL 100 Oper Oper High Limit 100
Low Limit Output_Low
Output_Low REAL 0 Oper Oper High Limit Output_High
Low Limit -100
Output_Rate REAL 10 Oper Oper High Limit 10,000
Low Limit 0.1

Table 9-8 PID Parameter Aftributes (continued)
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Name Type Cold Read Write Type Specific
Start Access Access Information
Process_Val REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Prop_Band REAL 5% Oper Oper High Limit 10,000
Low Limit 0.1
PropUnits BOOL PctSpan (0) |Oper Oper Senses PctSpan (0)
EngUnts (1)
Rel Ch2 Gain |REAL 1 Oper Oper High Limit 10
Low Limit 0.1
Sensor_Break BOOL Ok (0) Oper Super Senses Ok (0)
Break (1)
Setpoint REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
SP_FF _Enable BOOL No (0) Super Config Senses No (0)
Yes (1)
SP_FF Trim REAL 0 Config Config High Limit 100,000
Low Limit -100,000
PV_FF_Enable BOOL No(0) Super Config Sences No (0)
Yes (1)
PV_FF Trim REAL 0 Config Config High Limit 100,000
Low Limit -100,000
Span_High REAL 100 Config Config High Limit 100,000
Low Limit Span_Low
Span_Low REAL 0 Config Config High Limit Span_High
Low Limit -100,000
Status ENUM Ok (0) Oper Senses Ok (0)
SnsrBrk (1)
PV_High (2)
PV_Low (3)
SP_High (4)
SP_Low (5)
GainNeg (6)
GainHi (7)

Table 9-8 PID Parameter Attributes (continued)
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Name Type Cold Start Read Write Type Specific
Access | Access Information
Track Enable BOOL No (0) Super Config Senses No (0)
Yes (1)
Track_Value REAL 0 Super Config High Limit Output_High
Low Limit Output_Low
Zero_Deriv BOOL No (0) Config Config Senses No (0)
Yes (1)

Table 9-8 PID Parameter Attributes (continued)
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VP FUNCTION BLOCK
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Figure 9-44 VP Function Block Diagram
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BOOL Pot _Break

REAL Pot _Limit _High

REAL Pot _Limit _Io

BOOL BOOL

BOOL

BOOL

Zero_Deriv.......... Zero _Deriv BOOL

BOOL

NNANNLT

Integral_Hold

\ /

Figure 9-44 VP Function Block Diagram (continued)

Functional Description

The VP function block is an enhanced version of the PID function block, which
implements the proportional plus integral plus derivative control algorithm which
is also used in Eurotherm's 900 series control instruments, along with additional
output stages to enable it to control loops having motorised valves as actuators.
The basic PID algorithm can be represented by the equation:

10000 1 GE®
Output = Et [ | |
P (Span *Prop_Band )( (t) + integral | E(t).dt + Derivative g )

where E (t) is given by (Setpoint - Process_Val) and Span is given by (Span_High
- Span_Low). In the PC3000, this basic algorithm is supported by additional
functionality to improve the control performance and to enable the function block
to be configured to control a wide range of systems.. In the description of the
function block's operation and use given below, the parameters have been grouped
together under the common functional classifications of Configuration, Dynamic
Input, Control, Output Related and Diagnostic. Configuration parameters are
those which affect the structure of the controller and need only to be set during the
initial design.
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Function Block Attributes

TYPE: e 20 40

Class:...ccoceeeeeeereeeeeciieeeeeans CONTROL

Default Task: .....cccceeveeuunenee. Task 2

Short List: cccoevevieeiivennee. Setpoint, Process_Val, Manual, Output

Memory Requirements: ...... 264 Bytes

Execution Time.: ................. 1.9 ms

Dynamic Inputs are those which may typically change frequently during the run
time of the function block. Control related parameters affect the turing of the
loop. 'Output’ Related parameters are those concerned directly with the Output
stage of the block. Finally, Diagnostic parameters give information regarding
various stages of calculation within the block.

Valve Positioner Output Stage Description

Update Fir i mum Mi i mam

Time On Time On Time
sP + FIDO _é_hLlp-:Iute + | JHinimum om —+ Raize
* Algorithm| 7| Filter| ™ N TTime Check el | ower

FL

Trawe|
Time

Figure 9-45 Valve Positioner Block Diagram.

The function block's valve positioner stages use a boundless algorithm, which has
been incorporated because it does not require position feedback from the valve,
since this can often be unreliable. A model of the valve is included for valve
position output control. Potentiometer position feedback can be used in
conjunction with the valve model. In this mode of operation, the valve model
position is used for control. The actual position is used for limitting purposes only.
This enables the controller to continue operating if the feedback potentiometer
should fail.
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Parameter Descriptions

Break_Output:
Control_Sig:
CS_Pre_Limit:

Cutback_High:

Cutback Low:
Debump:
Debump_Dis:
Deriv_On_PV:
Deriv_Out:
Derivative:
Direct:

Error:

Feed_Forward:

Feedback:
Integral:
Integral_Hold:
Integral_Out
Lower:
Manual:
Manual_Reset:

Configuration
Diagnostic
Diagnostic
Control
Control
Dynamic Input
Dynamic Input
Configuration
Diagnostic
Control
Configuration
Diagnostic
Dynamic Input
Diagnostic
Control
Control
Diagnostic
Output
Control
Control

Min_On_Time
Nerror:
Output:

Pot Break:
Pot_Enable:
Pot Limit Hi:
Pot_Limit_Lo:
Pot_Position:
Process_Val:
Prop_Band:
Raise:
Sensor_Break:
Setpoint:
Span_High:
Span_Low:
Status:

Travel _Time:
Update_Time:
VP_Model

Zero_Deriv:

Configuration
Diagnostic
Output

Pot Feedback
Pot Feedback
Pot Feedback
Pot Feedback
Pot Feedback
Dynamic Input
Control
Output
Dynamic Input
Dynamic Input
Configuration
Configuration
Diagnostic
Configuration
Configuration
Diagnostic
Control

Table 9-9 Parameter Classification

Function Block Configuration Parameters

For optimum operation, the VP function block must be configured to the type of

control problem that it is to be applied to. This configuration is performed by
appropriate setting of the input parameters. The use of these configuration
parameters is described below.

Span_High and Span_Low.

Span_High and Span_Low define the maximum and minimum limits of the
working range of the function block. Generally these are set to values which

represent physical boundaries in the operation of the process, such as the

calibrated range of a transducer, or the safe limits of a pressure vessel. The

PC 3000 Function Blocks
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proportional band of the PID algorithm is defined as a percentage of the span of
the function block, which is found by subtracting Span_Low from Span_High. If
the Process_Val moves outside the span the function block will enter a sensor
break condition.

Direct

Direct defines whether the function block is direct acting or reverse acting. If the
function block is direct acting, the Output will tend to increase if the Process_Val
is greater than the Setpoint. If the function block is reverse acting, the Output will
tend to increase if the Process_Val is less than the Setpoint.

Deriv._On PV
Deriv_On_PV defines whether the derivative action is responds to changes to

Process_Val only (On_PV (1)) or to changes to the difference between the
Setpoint and the Process_Val (On_Err (0)).

Update Time
Update_Time defines the sample time of the valve positioner output stages.
Generally, this should be set to one tenth of the Travel Time. Increasing the
Update_Time will reduce the amount of activity of the valve, but can also reduce
the accuracy of the control. Similarly, reducing the Update_Time can improve the
control performance, but will also increase the amount of activity of the valve.

Travel Time

Travel_Time is the amount of time it takes the valve to travel from the lower
operating position to the upper operating position.

Min_On_Time
Min_On_Time defines the minimum time that the valve must remain in a state of
opening, closing or remaining stationary.

Break Output

Break_Output defines the output state to which the function block will default
when a sensor break condition has been detected. This is either triggered by
Sensor_Break being set to Break (1), or by the Process_Val or setpoint moving
outside the span of the function block.
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Potentiometer Feedback Parameters

Pot_Position

Pot_Position is the input to which the valve position feedback potentiometer is
connected.

Pot Enable

When Pot_Enable is set to Yes (1), the potentiometer feedback algorithm is
activated. Setting Pot_Enable to No (0) causes the function block to operate
without potentiometer feedback.

Pot_Break

Pot_Break provides an external trigger to indicate that the potentiometer feedback
has become disconnected, or is faulty. Setting Pot_Break to Yes (1) indicates a
fault condition has occured. Setting Pot_Break to No (0) indicates the sensor is
functioning normally.

Pot Limit Hi
Pot_Limit_Hi defines the upper operating position of the valve.

Pot_Limit_Lo
Pot_Limit_I.o defines the lower operating position of the valve.

Function Block Dynamic Input Parameters

Setpoint and Process Val

The Process_Val is the controlled variable of the function block and the Setpoint is
the target value against which the Process_Val is controlled. The PID algorithm
acts to reduce the difference between the Setpoint and the Process_Val to zero.

Sensor_Break

The sensor break input provides a trigger which can be used to set the function
block into a sensor break condition. When the function block is in sensor break,
the Output will be set to Break_Output and the PID algorithm will be disabled. On
leaving the sensor break condition, the algorithm will hold the output at
Break_Output for sixteen samples, to ensure that the sensor has been properly re-
acquired.
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Debump and Debump Dis

Debump functionality is employed by the function block to ensure that changes to
operating conditions or control parameters do not result in sharp deviations of the
Output signal. In the PC3000, debumping is automatically carried out whenever
changes are made to Prop_Band, Derivative, Span_High, Span_Low,
Ch1_Ch2_D_B, Rel_Ch2_Gain, or when the mode of the function block is
switched between Manual and Auto. The parameter Debump can be used to trigger
debumping for other changes, such as changes to the Setpoint. Debump_Dis can
be used to disable the debump functionality, which will allow the Output to "kick"
in response to changes in the parameters listed above.

SP_FF_Enable and SP_FF_Trim

SP_FF_Enable is used to enable Setpoint feedforward functionality, which is
generally employed when the function block is being used as part of a cascade
control application. SP_FF _Trim is used to limit the peak level of the setpoint
feedforward trim term. The units of SP_FF_Trim are in percent of the span of the
Output signal of the PID port.

Function Block Control Parameters

The function block has several parameter which are not intended to be changed
dynamically, but instead control the operation of the algorithm. These include the
tuning parameters, such as Prop_Band, as well as booleans which are used to
change the mode of operation. These parameters are described below.

Manual

Manual is used to select whether the function block operates in Manual or Auto
mode. In Manual mode, the PID algorithm is disabled and the value of Output is
taken directly from its input. In Auto mode the full controller functionality is
active.

PropUnits (Version 3.00 onwards)

PropUnits is to define whether the Prop_Band is defined as a percentage of the
controller span (PctSpan (0)) or in engineering units (EngUnts (1)).

Prop_Band
Prop_Band is the proportional band of the PID control algorithm.

Prior to Version 3.00, the proportional band could only be defined as a percentage
of span. The engineering units mode was not supported.
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If PropUnits is set to a percentage of span (PctSpan (0)), the proportional band is
defined as the percent of the total span of the controller for which a control error
will produce an output signal equivalent to the maximum output of the instrument.
For example, if Span_High is 1000, Span_Low is 0, Setpoint is 500, Process_Val
is 490 and Prop_Band is 1%, a proportional only reverse acting controller will
produce an output of +100%, because the control error will be 10 units, which is
one proportional band.

Note:- When defined as a percentage of span, the the proportional gain is given
by:

10,000
(Span_High - Span_Low) *Prop_Band

Gain =

If PropUnits is set to engineering units (EngUnts (1)), the proportional band is
defined as the magnitude of the control error which will produce an output signal
equivalent to the maximum output of the instrument. For example, if Setpoint is
500°C, Process_Val is 495°C and Prop_Band is 5°C, a proportional only reverse
acting controller will produce an output of +100%, because the control error is 5°C
which is equal to one proportional band.

When defined in Engineering units, the proportional gain is given by:

Gain = 100
Prop_Band

Integral

Integral is the integral time constant of the PID control algorithm. Integral time is
defined as the time period in which the part of the output signal due to integral
action increases by an amount equal to the part of the output signal due to
proportional action, for a constant error state.

Derivative

Derivative is the derivative time constant of the PID control algorithm. Derivative
time is defined as the time interval in which the part of the output signal due to
derivative action increases by an amount equal to the part of the output signal due
to proportional action, when the control error is changing at a constant rate.

Feed Forward

Feed_Forward is added directly to the output of the PID algorithm, before the
output limiting and dual output conversions are performed.

PC 3000 Function Blocks 9-109



VP

Manual_Reset

Manual_Reset is only active when Integral is set to zero. It provides an offset to
the Output, which can be used to reduce the control error to zero when integral
action is not employed.

Cutback High and Cutback Low

Cutback can be employed to reduce the amount of time it takes the Process_Val to
respond to large changes in Setpoint and to limit the overshoot that can occur
during the transient period. Cutback_High operates when the Process_Val is
initially greater than the target Setpoint and Cutback_Low operates when the
Process_Val is initially less than the target Setpoint. The units of Cutback_High
and Cutback_Low are engineering units. Cutback operates by forcing the Output
to its appropriate maximum or minimum limit in response to a Setpoint change
which is greater than the cutback band. As the Process_Val approaches the
Setpoint, the control error (Setpoint - Process_Val) reduces to less than the
cutback value and normal control is resumed.

Zero _Deriv

Zero_Deriv can be used to force the derivative output to zero. It is automatically
cleared by the function block after one sample.

Integral Hold

Integral_Hold enables the integral output to be frozen at its current value. It will
remain constant throughout the period that Integral_Hold is enabled.

Function Block Output Parameters

Output, Raise and Lower

When the function block is operating in Manual mode, Output serves as an input
which can be used to directly control the Raise and Lower outputs to the valve.

Function Block Diagnostic Parameters

CS_Pre_Limit
This is the output of the PID controller after the Feed_Forward has been added,
but before Output limiting has been performed.

Control_Sig

Control_Sig is the sum of the proportional, integral, derivative and feed forward
components after being high, low and rate of change limited, but before the dual
output relative gain and deadband have been added.
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Integral_Out and Deriv_Out, Nerror

Nerror, Integral_Out and Deriv_Out are the outputs of the proportional integral
and derivative components respectively.

Feedback

Feedback is the value of the signal which is fed back into the PID to indicate the
actual signal that is output by the controller.

Error
Error is the difference between the Process_Val and the Setpoint.

VP_Model
VP_Model is the output of the internal model of the valve.
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Status

Status provides an indication of the function of the function block. it can have
eight possible states:

Ok (0):

SnsrBrk (1):

PV_High (2):

PV_Low (3):

SP_High (4):

SP_Low (5):

GainNeg (6):

GainHi (7):

The function block is operating normally

An external sensor break has been detected

The Process_Val is greater than Span_High +10%
The Process_Val is less than Span_Low -10%
The Setpoint is greater than Span_High

The Setpoint is less than Span_Low

The Prop_Band has been set with a negative value, or Span_High
has been set less than Span_Low

The Prop_Band has been set with too small a value or the span of
the function block has been set too small, resulting in a very large
gain.
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Parameter Atiributes

Name Type Cold Start Read Write Type Specific
Access | Access Information
Break Output |REAL 0 Oper Oper High Limit Output_High
Low Limit Output_Low
Control_Sig REAL 0 Config High Limit 100,000
Low Limit -100,000
CS_Pre_Limit REAL 0 Config High Limit 100,000
Low Limit -100,000
Cutback High |REAL 0 Super Super High Limit Span_High
Low Limit 0
Cutback Low REAL 0 Super Super High Limit Span_High
Low Limit 0
Debump BOOL No (0) Super Config Senses No (0)
Yes (1)
Debump_Dis BOOL No (0) Config Config Senses No (0)
Yes (1)
Deriv_On_PV BOOL On_Err (0) |Config Config Senses On_Err (0)
On_PV (1)
Deriv_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
Derivative TIME 50s Oper Oper High Limit 01d_03h
Low Limit 0
Direct BOOL No (0) Config Config Senses No (0)
Yes (1)
Error REAL 0 Super High Limit 100,000
Low Limit -100,000
Feed Forward |REAL 0 Super Super High Limit 100
Low Limit -100
Feedback REAL 0 Config High Limit 100,000
Low Limit -100,000

Table 9-10 VP Parameter Attributes
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Name Type Cold Read Write Type Specific
Start Access Access Information
Integral TIME 5m Oper Oper High Limit 01d_03h
Low Limit 0
Integral_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
IntegralHold BOOL No (0) Config Config Senses No (0)
Yes (1)
Lower BOOL Off (0) Oper Senses Off (0)
Lower (1)
Manual BOOL Manual (1) |Oper Oper Senses Auto (0)
Manual (1)
Manual_Reset REAL 0 Oper Oper High Limit 100
Low Limit -100
Min_On _Time |TIME 100ms Oper Oper High Limit 5s
Low Limit 100ms
Nerror REAL 0 Super High Limit 100,000
Low Limit -100,000
Output REAL 0 Oper Oper High Limit Output_High
Low Limit Output_Low
Pot_Break BOOL No (0) Oper Super Senses No (0)
Yes (1)
Pot Enable BOOL No (0) Oper Super Senses No (0)
Yes (1)
Pot Limit Hi REAL 100 Oper Super High Limit 100
Low Limit 0
Pot_Limit_Lo REAL 0 Oper Super High Limit 100
Low Limit 0
Pot_Position REAL 0 Oper Super High Limit 100
Low Limit 0
Process Val REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low

Table 9-10 VP Parameter Atiributes
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Name Type Cold Start Read Write Type Specific
Access Access Information
Prop_Band REAL 5% Oper Oper High Limit 10,000
Low Limit 0.1
PropUnits BOOL PctSpan (0) |Oper Oper Senses PctSpan (0)
EngUnts (1)
Raise BOOL Off (0) Oper Senses Off (0)
Raise (1)
Sensor_Break BOOL Ok (0) Oper Super Senses Ok (0)
Break (1)
Setpoint REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Span_High REAL 100 Config Config High Limit 100,000
Low Limit Span_Low
Span_Low REAL 0 Config Config High Limit Span_High
Low Limit -100,000
Status ENUM Ok (0) Oper Senses Ok (0)
SnsrBrk (1)
PV_High (2)
PV Low (3)
SP_High (4)
SP_Low (5)
GainNeg (6)
GainHi (7)
Travel_Time TIME 20s Oper Oper High Limit 16m_40s
Low Limit 5s
Update Time TIME 1s Oper Oper High Limit 20s
Low Limit 100ms
VP_Model REAL 50 Config High Limit 100
Low Limit 0
Zero_Deriv BOOL No (0) Config Config Senses No (0)
Yes (1)

Table 9-10 VP Parameter Atftributes (continued)

PC 3000 Function Blocks

9-115



PID_Auto

PID_AUTO FUNCTION BLOCK

PID Auto

real — | span_nigh Chl _Output | __|— REAL
REAL _|: Span_Low Ch2_Output ] REAL
500l — | pirect CS_Pre_Limit | |— REAL
BOOL _|: Deriv_On_PV Control_Sig ] REAL
REAL _|: Process_Val Integral_Out |  |— REAL
REAL _|: Setpoint Deriv_out | _|— REAL
BOOL _|: Manual Feedback | __[— REAL
REAL _|: ] REAL
REAL —|: Output_High Error | __— REAL
REAL _|: Output_Low Nerror | ___|— REAL
REAL —|: Prop_Band - - - - — — - - Prop_Band | |— EnuM
soor —| | PropUnits

rive —[ | Integral - - - - oo - - - Integral | |— smvr
rivg — | Derivative - - - - - - Derivative | |— BooL
REAL _|: Manual_Reset Zn_Stage ] SINT
rEAL —[ | Cutback High _ . . Cutback High | |— sinT
REAL — | Cutback_Low _ _ _ _ . Cutback_Low | |— sInT
REAL _|: Rel Ch2_Gain Rel Ch2_ Gain [ |— rEAL
reab — lcn1 ch2 p B Tuning | | BooL
BOoL _|: Out_Rate_En Proc_Delay | [— TIME
REAL _|: Output_Rate DRA_State | | SINT
REAL —|: Feed Forward DRA_Last [ [— smT
BOOL _|: Sensor Break __/\ LSAT_F1 REAL

Figure 9-46 PID_Auto Function Block Diagram
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Figure 9-46 PID_Auto Function Block Diagram (continued)
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Functional Description

The PID_Auto function block implements the proportional plus integral plus
derivative control algorithm and the Auto and Adaptive tuning algorithms that are
also used in the Eurotherm 900 series control instruments. It is a complex function
block which includes three tuning algorithms which can be used to set the
parameters of the PID controller, plus an overshoot inhibition algorithm for use
when the function block is following ramping Setpoint profiles.

The control algorithm used in PID_Auto is identical to that employed in the PID
function block. The basic PID algorithm can be represented by the equation:

- 10000 1 o GE®
Output = E(t) + [ | |
P (Span *Prop_Band )( (® Integral | E(t).dt + Derivative .

where E (t) is given by (Setpoint - Process_Val) and Span is given by (Span_High
- Span_Low). In the PC3000, this basic algorithm is supported by additional
functionality to improve the control performance and to enable the function block
to be configured to control a wide range of systems.

Achieving the optimum performance from the block requires that the controller
and tuners are correctly configured and activated. A description of the separate
elements of the function block is given below.

Autotune D.R_A. L.S.A.T.
Hawe form Least Sguares
One-Shot T _
nETEnet THnEr Analyszis Tuner Fldull_:-_t_lyra_ _Ty_rl'ler“

Tuner Overseer

Setpoint il Output
n ol | B

Process_lal
Figure 9-47 Block Diagram of the Principal PID_Auto Functionality.
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Function Block Atiributes

1517 0 1SR 20 50

Class: .coceevvereerierneereeeeneeeens CONTROL

Default Task: .....ccevunreennnnees Task 2

Short List: ....ceveveveeereeeennnnn. Setpoint, Process_Val, Manual, Output

Memory Requirements: ...... 2030 bytes
Execution Time: ................. 1.63ms when not tuning

3.61ms maximum when tuning
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Parameter Descriptions

AT_Out_High: Tuning Manual_Reset: Control
AT Out_Low: Tuning MTC: Tuning
Break Output: Configuration Nerror: Diagnostic
Ch1_Ch2_D B: Output Out_Rate_En: Output
Ch1 _CT Low: Tuning Output: Output
Ch1 _Cycle T: Tuning Output_High: Output
Ch1_Output: Output Output_Low: Output
Ch2 _CT Low: Tuning Output_Rate: Output
Ch2 Cycle T: Tuning Param_Change: Tuning
Ch2_Linear: Tuning Process Val: Dynamic Input
Ch2_Output: Output Prop_Band Control
Control_Sig: Diagnostic PV_FF _Enable Dynamic Input
CS Pre_Limit: Diagnostic PV_FF Trim Dynamic Input
Cutback_High: Control Q: Tuning
Cutback_Low: Control Ramp_Rate: Control
Debump: Dynamic Input Rel_Ch2_Gain: Output
Debump_Dis: Dynamic Input Sensor_Break: Dynamic Input
Deriv_On_PV: Configuration Setpoint: Dynamic Input
Derivative: Control SP_FF_Enable: Dynamic Input
Direct: Configuration SP_FF_Trim: Dynamic Input
Error: Diagnostic Span_High: Configuration
Feed Forward: Dynamic Input Span_Low: Configuration
Feedback: Diagnostic Status: Diagnostic
Inhibiter: Control Track _Enable: Control
Integral: Control Track Value: Control
Integral_Hold: Control Trigger Val: Tuning
Manual: Control Tune_Type: Tuning
Table 9-11 Parameter Classification
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Function Block Configuration Parameters

For optimum operation, the function block must be configured to the type of
control problem that it is to be applied to. This configuration is performed by
appropriate setting of the input parameters. The use of these configuration
parameters is described below.

Span_High and Span_Low.

Span_High and Span_Low define the maximum and minimum limits of the
working range of the function block. Generally these are set to values which
represent physical boundaries in the operation of the process, such as the
calibrated range of a transducer, or the safe limits of a pressure vessel. The
proportional band of the PID algorithm is defined as a percentage of the span of
the function block, which is found by subtracting Span_Low from Span_High. If
the Process_Val or Setpoint move outside the span the function block will enter a
sensor break condition.

Direct

Direct defines whether the function block is direct acting or reverse acting. If the
function block is direct acting, the Output will tend to increase if the Process_Val
is greater than the Setpoint. If the function block is reverse acting, the Output will
tend to increase if the Process_Val is less than the Setpoint.

Deriv_On_PV
Deriv_On_PYV defines whether the derivative action is responds to changes to

Process_Val only (On_PV (1)) or to changes to the difference between the
Setpoint and the Process_Val (On_Err (0)).

Break Output

Break_Output defines the output level to which the function block will default
when a sensor break condition has been detected. This is either triggered by
Sensor_Break being set to Break (1), or by the Process_Val moving outside the
span of the function block +10% or Setpoint moving outside span.
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Control Parameters

The function block has several parameter which are not intended to be changed
dynamically, but instead control the operation of the algorithm. These include the
tuning parameters, such as Prop_Band, as well as booleans which are used to
change the mode of operation. These parameters are described below.

Manual

Manual is used to select whether the function block operates in Manual or Auto
mode. In Manual mode, the PID algorithm is disabled and the value of Output is
taken directly from its input. In Auto mode the full controller functionality is
active.

PropUnits (Version 3.00 onwards)

PropUnits is to define whether the Prop_Band is defined as a percentage of the
controller span (PctSpan (0)) or in engineering units (EngUnts (1)).

Prop_Band
Prop_Band is the proportional band of the PID control algorithm.

Prior to Version 3.00, the proportional band could only be defined as a percentage
of span. The engineering units mode was not supported.

If PropUnits is set to a percentage of span (PctSpan (0)), the proportional band is
defined as the percent of the total span of the controller for which a control error
will produce an output signal equivalent to the maximum output of the instrument.
For example, if Span_High is 1000, Span_Low is 0, Setpoint is 500, Process_Val
is 490 and Prop_Band is 1%, a proportional only reverse acting controller will
produce an output of +100%, because the control error will be 10 units, which is
one proportional band.

Note:- When defined as a percentage of span, the the proportional gain is given
by:

10,000
(Span_High - Span_Low) *Prop_Band

Gain =

If PropUnits is set to engineering units (EngUnts (1)), the proportional band is
defined as the magnitude of the control error which will produce an output signal
equivalent to the maximum output of the instrument. For example, if Setpoint is
500°C, Process_Val is 495°C and Prop_Band is 5°C, a proportional only reverse
acting controller will produce an output of +100%, because the control error is 5°C
which is equal to one proportional band.

When defined in Engineering units, the proportional gain is given by:
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Gain = 100
Prop_Band

Integral

Integral is the integral time constant of the PID control algorithm. Integral time is
defined as the time period in which the part of the output signal due to integral
action increases by an amount equal to the part of the output signal due to
proportional action, for a constant error state.

Derivative

Derivative is the derivative time constant of the PID control algorithm.
Derivative time is defined as the time interval in which the part of the output
signal due to derivative action increases by an amount equal to the part of the
output signal due to proportional action, when the control error is changing at a
constant rate.

Feed Forward

Feed_Forward is added directly to the output of the PID algorithm, before the
output limiting and dual output conversions are performed.

Manual_Reset

Manual_Reset is only active when Integral is set to zero. It provides an offset to
the Output, which can be used to reduce the control error to zero when integral
action is not employed.

Cutback High and Cutback Low

Cutback can be employed to reduce the amount of time it takes the Process_Val to
respond to large changes in Setpoint and to limit the overshoot that can occur
during the transient period. Cutback_High operates when the Process_Val is
initially greater than the target Setpoint and Cutback_Low operates when the
Process_Val is initially less than the target Setpoint. The units of Cutback_High
and Cutback_Low are engineering units. Cutback operates by forcing the Output
to its appropriate maximum or minimum limit in response to a Setpoint change
which is greater than the cutback band. As the Process_Val approaches the
Setpoint, the control error (Setpoint - Process_Val) reduces to less than the
cutback value and normal control is resumed.

Track Enable and Track Value
Track_Enable allows the PID algorithm to be disabled and the Output signal to be
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read directly from Track_Value. These parameters are generally used when the
function block forms part of a cascade control application.

Integral Hold

Integral_Hold enables the integral output to be frozen at its current value. It will
remain constant throughout the period that Integral_Hold is enabled.

Dynamic Input and Output Parameters

Setpoint and Process_Val
The Process_Val is the controlled variable of the function block and the Setpoint is

the target value against which the Process_Val is controlled. The PID algorithm
acts to reduce the difference between the Setpoint and the Process_Val to zero.
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Zero Deriv

Zero_Deriv can be used to force the derivative output to zero. It is automatically
cleared by the function block after one sample.

Integral_Hold

Integral_Hold enables the integral output to be frozen at its current value. It will
remain constant throughout the period that Integral_Hold is enabled.

Output Parameters

Output, Ch1_Output and Ch2_ Output

he Output 100 4 iZhl Output
50 #_s'x
'_.....-25 . .-...-_."
= L] L] L] I.:i. i L] L] L] =
-100 =50 =25 0O 2% 50 100
Jatput
Figure 9-48 Dual Output Relationship, with Unity Rel Ch2 Gain and zero
Ch1 Ch2 D B

The PID function block channel can be configured for either single or dual channel
operation. In single channel operation, the control is on-Output, which is limited
within the range + 100 % to 0 % by the parameters Output_High and Output_Low.
Dual channel operation is designed for systems such as heat-cool applications, in
which negative values of Output must be output to a refrigeration unit as absolute
values to increase the refrigeration rate. For dual channel operation Output_Low is
set to - 100%.
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Output_High and Output Low

Output_High and Output_Low define the upper and lower limits of Output They
must both be set within the range -100% to +100%, with Output_High being
greater than or equal to Output_Low. When the function block is being used for
dual output operation, Ch1_Output and Ch2_Output are related to Output as
shown in Figure 9-7, with Output being bounded by Output_High and
Output_Low.

Rel Ch2_Gain and Ch1_Ch2 D B

When the function block is being used for dual channel control, the full
relationship between Ch2_Output and Output is given by:

Ch2_Output = (Output + Chl_Ch2_D_B) * Rel_Ch2_Gain

Rel_Ch2_Gain is intended for use in non linear dual output control situations,
such as heat / cool systems, to compensate for the differing gains of the equipment
being driven by the two output channels. Chl_Ch2_D_B introduces a deadband
between the two output channels, which can either be set to a positive value to
provide a region in which neither channel is active, or to a negative value to
provide a region of overlap in which both outputs are active.

Output_Rate and Out_Rate En

Output_Rate can be used to limit the maximum rate of change of Output per
second. It is enabled by setting Out_Rate_En to Yes (1). Note that Output_Rate
affects the rate of change of Output directly, so that the rate of change of
Ch2_Output will be modified by the Rel_Ch2_Gain.

Output_Rate can be used to limit the maximum rate of change of Output per
second. It is enabled by setting Out_Rate_En to Yes (1). Note that Output_Rate
affects the rate of change of Output directly, so that the rate of change of
Ch2_Output will be modified by the Rel_Ch2_Gain.

Ch1 Cycle Tand Ch2 Cycle T

Ch1_Cycle_T and Ch2_Cycle_T are the cycle times of channels 1 and 2, which
can be used when the function block is connected to time proportioned outputs.
The values of the two cycle times will be automatically set by the Autotuner on
completion of the tuning sequence, only if their initial value is greater than 5s.

Ch2 Linear

Ch2_Linear is a boolean, which provides an indication to the tuning and control
algorithms that the output to channel 2 is linear. If Ch2_Linear is Yes (1), the
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tuning sequences will operate with equal peak output levels on both output
channels. If Ch2_Linear is No (0), the output to channel 2 will be limited to 20 %
and the tuner will tune the control parameters to suit the water cooling outputs
relationship.

Ch1_CT Low and Ch2_CT Low

Ch1_CT_Low and Ch2_CT_Low define the lower limits of the cycle times of
output channels 1 and 2 which can be set by the autotuner when the function block
is being used to drive time proportioned outputs.

Sensor_Break

The sensor break input provides a trigger which can be used to set the function
block into a sensor break condition. When the function block is in sensor break,
the Output will be set to Break_Output and the PID algorithm will be disabled. On
leaving the sensor break condition, the algorithm will hold the output at
Break_Output for sixteen samples, to ensure that the sensor has been properly re-
acquired.

Debump and Debump Dis

Debump functionality is employed by the function block to ensure that changes to
operating conditions or control parameters do not result in sharp deviations of the
Output signal. In the PC3000, debumping is automatically carried out whenever
changes are made to Prop_Band, Derivative, Span_High, Span_Low,
Ch1_Ch2_D_B, Rel_Ch2_Gain, or when the mode of the function block is
switched between Manual and Auto. The parameter Debump can be used to trigger
debumping for other changes, such as changes to the Setpoint. Debump_Dis can
be used to disable the debump functionality, which will allow the Output to "kick"
in response to changes in the parameters listed above.

SP_FF_Enable and SP_FF Trim

SP_FF_Enable is used to enable Setpoint feedforward functionality, which is
generally employed when the function block is being used as part of a cascade
control application. SP_FF_Trim is used to limit the peak level of the setpoint
feedforward trim term. The units of SP_FF_Trim are in percent of the span of the
Output signal.

PV_FF_Enable and PV_FF Trim

These are used when PV feedforward is required in cascade. The functionality is
just as setpoint feedforward with process value replacing the setpoint.
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The PID_Auto tuning algorithms

The Autotune Algorithm

The autotune algorithm is a one shot tuner which was previously implemented in
the Eurotherm 818 and 815 instruments. The principles of operation of this tuner
are described in detail in the PC3000 Control Overview. The description given
here is intended as an outline to enable the user to understand its role within
PID_Auto.

When the autotune algorithm is selected the PID control algorithm is disconnected
from the process, with the autotuner driving the controller's outputs directly using
ON/OFF control. On selection of autotune, if the current process value is within
1% of setpoint, the outputs are frozen at their existing values, otherwise the
outputs are set to zero. This output value is held for one minute, during which the
autotuner monitors the process to asses the noise level and the action of the
process value. During this first minute the operator can select the setpoint at which
the tuning is to be performed. This can be the current setpoint, if required, or a
setpoint greater than or less than the current value.

When the one minute monitoring cycle has elapsed, the autotuner cycle will move
into its active phase. If the current setpoint is more than 1% of span greater than
the current process value, a tune up to setpoint will be performed. If the setpoint is
more than 1% of span less than the current process value, a tune down to setpoint
will be performed. If the current setpoint is within 1% of span of the process value,
a tune at setpoint will be performed. These are described in detail in the references
quoted above. The process value and output curves for the three types of autotune
cycles, for a heat only instrument, are shown in the figure 9-49.
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Autotune D.R_A. L.S.A.T.

- HWaueform Least Squares
One-Shot Tuner Aralusis Tumer Hd“P}jFE_IHPEF
Tuner Overseer

Setpoint bl Output

= FID |——t

Frocess_Llal

Figure 9-49 Heat only autotune cycles.

At the end of the autotune cycle, the following parameters are calculated and
loaded into the controller:

Proportional Band

Integral time

Derivative time

Cutback High
Cutback Low

(tune down to setpoint only)

(tune up to setpoint only)

Ch1 Cycle Time (if time proportioned output)

Ch2 Cycle Time  (if time proportioned output and cool channel

selected)

Rel Ch2 Gain
Trigger Val
MTC

Q

(if cool channel selected)
(used by DRA and LSAT)
(used by LSAT)
(used by LSAT)
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The Disturbance Response Analysis Algorithm (DRA)

The DRA is an adaptive tuner which was previously implemented in the
Eurotherm 818 instrument. It is an elementary expert system, which acts by
identifying patterns in the error (setpoint—process value) response and adjusting
the controller parameters to compensate for responses which are slow or
oscillatory. Unlike the autotuner, DRA does not drive the controller outputs
directly.

DRA is triggered into monitoring the control response when the absolute error
exeeds the Trigger Value, which can be set manually but is automatically set by
the autotuner. Once triggered by a disturbance, such as a setpoint change or a load
disturbance, DRA monitors up to two cycles of oscillation of the error before
deciding what, if any, modification of the control terms is required.

The ratio of peaks of the error (the damping ratio) is the main criteria which is
used to decide whether retuning is required. If the amplitude of the peaks is small,
the tuner disables itself and will not retune the controller parameters.

In the 818 implementation of DRA, if the algorithm determined that retuning was
necessary, the Porportional Band, Integral time and Derivative time were adjusted.
In the PID_Auto implementation, DRA also adjusts the LSAT referencing terms
MTC and Q. MTC is adjusted in series with the Integral and Derivative times. Q is
adjusted with the Proportional Band.

If the response is analysed to be oscillatory, the oscillation time is used to
determine whether the gain, the integral and derivative times, or both the gain and
the times require adjustment.

DRA adaptive tune strategy selection.

The Least Squares Adaptive Tuner algorithm (LSAT).
The LSAT algorithm is an adaptive tuner which, like the DRA algorithm, does not

drive the controller outputs directly, but instead tunes the PID control coefficients.
The LSAT should be considered to consist of two main parts:

{1} A process model identifier
{2} A controller designer.

The algorithm looks at the controller output and the process value. It continually
feeds the controller output into an internal model of the process and compares the
process value predicted by this model with the actual process value.

The recursive least squares algorithm is used to adjust the parameters of the model
so that the predicted process value matches the actual process value. In this way
the model is continuously being fine tuned so that it matches the actual process
being controlled. The model is then used by the controller designer to define and
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set the optimum PID parameters for the process being controlled. This employs a
model-reference approach, in which the closed-loop performance of the system is
optimised against that of the internal reference closed—loop model. A block
diagram of the LSAT algorithm is shown below.

Distarbance
Setpoint Controller Oy tput: Process F'r*l:-:ess_L:ul
ry ': :} ' -
-k
=1
W Model
Q4
a}
= Recuralve Least | & +
b Snuares Estimator ol

Figure 9-50 Block diagram of the Least Squares Adaptive Tuner.

An advantage of the LSAT is that, unlike the DRA, it does not require large
process disturbances or step setpoint changes in order to act. It can fine tune the
controller during regulatory control, since it is able to filter elements of the process
noise signal and utilise these in the model identification.

The fine tuning action of the LSAT is an important feature when implemented in
the PID_Auto adaptive tuner. It enables it both to complement the coarser tuning
action of the DRA and to fine tune the parameters set by the Autotuner.

The procedure of model identification through prediction and design through
model reference enables the LSAT to continuously tune the controller parameters
during on—line control operations. However, the LSAT algorithm is not able to
determine the structure of the process model, it fits parameters to a model whose
structure is pre—defined. This restriction could limit its suitability for

implementation as a stand—alone general purpose adaptive tuner, so the algorithm
has been developed to adapt its identification and parameter design in response to
external referencing. This takes the form of two parameters — "MTC", a process
time constant scaler from which the LSAT determines its sample frequency and
"Q", which gives an indication of the unmodelled (high frequency) process
coefficients. Although this information can be input manually, it requires a high
level of LSAT expertise and process knowledge, so the Autotune and DRA
algorithms have been developed to identify MTC and Q and to prime the LSAT
with these values. The resulting three tuner interaction forms the "Composite"
tuner.
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The Operation of the PID_Auto Tuners.

The Composite tuner combines the functionality of the three tuners described
above, Autotune, DRA and LSAT. It has been developed to enable the strengths of
the three algorithms to be utilised to provide the optimum tuning performance
under the widest range of control conditions. The functions performed by the three
tuning algorithms of the composite tuner may be summarised as:

{i} Autotune: initial one—shot tuning of PID parameters, coarse identification of
process model, identification of process noise levels.

{ii} DRA: coarse adaption to changes in process operating conditions, coarse
adjustment of LSAT reference model, adjustment of controller when necessary in
response to large process disturbances.

{iii} LSAT: fine tuning of PID parameters after Autotune and during adaptive tune
sequence, fine tuning during setpoint ramps and in response to small process
changes or small disturbances.

Selecting the Autotuner will result in the one—shot tuner sequence being activated.
Selecting Adaptive tune will activate both the DRA and the LSAT adaptive tuning
algorithms together. It should be noted that the optimum tuning performance
will be obtained when AUTO/TUNE precedes ADAPT/TUNE. The Autotune
algorithm has been enhanced to provide the initialisation that LSAT requires. If
Autotune does not precede Adaptive, then DRA is required to initialise LSAT,
which can require several DRA adaption sequences to take place and can result in
a very slow tuning of the controller.

When Autotune followed by Adaptive tune is selected, an Autotune sequence is
performed followed by an automatic switch to Adaptive tune. The Adaptive Tune
sequence then begins by disabling the LSAT until the estimator has converged on
the process model. Once the LSAT has converged, the Adaptive Tune sequence
then continues with both the DRA and the LSAT algorithms tuning the controller,
under the guidance of the tuner overseer software. The sequence of AUTO/TUNE
followed by ADAPT/TUNE is represented below for a tune up to setpoint
Autotune.
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Figure 9-51 Autotune-Adaptive tune convergence sequence during a start up tune.

Function Block Tuning Parameters

{1} Tune_Type

Tune_Type defines which tuner, if any, is active. It can be set to one of eight values:
None (0):..oeeeeeeeeeennnnns No tuners active.

AT (1), Autotuner active.

DRA (2): v Adaptive tune (DRA) active.

LSAT (3): cceeevvrnennn. Adaptive tune (DRA and LSAT)) active.

DRA_LS (4): .............. Adaptive tune (DRA and LSAT) active.

AT DRA (). ... Autotuner followed by Adaptive tuner (DRA) active.

AT_LSAT (6): Autotuner followed by Adaptive tuner (DRA and LSAT)
active.

AT_D_L (7): Autotuner followed by Adaptive tuner (DRA and LSAT)
active.
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Param_Change

Param_Change is set by the tuners to indicate that the value of one of the
parameters has been changed. Once it has been changed by a tuner to Yes (1), it
must be reset externally to No (0).

Trigger Val

Trigger_Val provides an indication to the Adaptive tuner of the amount of process
noise which is present on the Process_Val. It is automatically set by the Autotuner
during the tuning sequence, but can be set manually by the user.

AT _Out_High and AT _Out _Low

AT_Out_High and AT_Out_Low limit the output swing during the autotune (on
firmware versions after 2-27). Prior to this version, OutputHigh and Output_Low
may be used to limit output swing during auto tune.

Tuning

Tuning provides an indication that the tuners are functioning. If Auto or Adaptive
tuners are active, Tuning will be Active (1), else Tuning will be Off (0)

Function Block Overshoot Inhibition Function

The PID_Auto function block includes the ability to inhibit the Process_Val
overshoot that can occur at the end of Setpoint ramps. To use the inhibition
function, it is necessary to provide the function block with information about the
target setpoint and rate of the ramp and to tune the level of overshoot inhibition
required. This is performed using the four inhibition inputs.

Inhibiter

Inhibiter defines the amount of overshoot inhibition required. It can be set to a
value between O and 1. A value of 0 indicates that the inhibition is off.

Ramp_Rate and Ramp_Units

Ramp_Rate defines the rate of change of the Setpoint during the ramp. Its units are
set by Ramp_Units.
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Target SP
Target_SP is the final target value to which the Setpoint is ramping.

In a correctly tuned PID controller, setpoint overshoot generally occurs at the end
of ramps because the integrator has wound up during the ramp. The overshoot
inhibition function operates by reducing the integrator wind up towards the end of
the ramp, which removes the "momentum" of the process value and enables it to
approach the target setpoint without overshoot.

The inhibition function is initialised at the start of the setpoint ramp, when the
value of Target_SP changes. The point at which the integrator wind up is
discharged and the amount of discharge is then determined according to the gain
and time constant of the controller, the Ramp_Rate and the value of Inhibiter,
which can be set within the range O to 1. Examples of overshoot performance for
no inhibition, ideal Inhibiter setting and Inhibiter settings too large and too small
are illustrated in the figure below.

The algorithm has been designed to give overdamped performance with Inhibiter
set to 0.5. When the setpoint ramp reaches the appropriate point near to the
Target_SP, the integrator is discharged, which inhibits the overshoot. This is
illustrated in figure {2}. If Inhibiter is set too large, the integrator will discharge
too early then begin to wind up again, which will result in a delayed overshoot as
shown in figure {3}. If Inhibiter is set too small, the integrator will discharge too
late and overshoot will occur due to the stored momentum of the process value,
which is illustrated in figure {4}.

aF P
PL Pl

{1} Mo Owershoot Inhibition {2} Inhibiter szet correctly

SF SF
P FL

{2} Inhibiter set too large {4} Inhibiter =set too =small

Figure 9-52 Setpoint Ramp Responses lllustrating the Effect of Inhibition.
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Function Block Diagnostic Parameters

MTC

This is the LSAT reference model time constant.

Q
Q is the LSAT reference detuning factor.

CS Pre Limit
This is the output of the PID controller after the Feed_Forward has been added,
but before Output limiting has been performed.

Control_Sig

Control_Sig is the sum of the proportional, integral, derivative and feed forward
components after being high, low and rate of change limited, but before the dual
output relative gain and deadband have been added.

Nerrer, Integral_Out and Deriv_Out,

These are the outputs of the proportional, integral and derivative components
respectively.

Feedback

It is the value of the signal which is fed back into the PID to indicate the actual
signal that is output by the controller.

Error
The difference between the Process_Val and the Setpoint.

AT State
AT State indicates the state of the Autotuner.
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Reset

Initiatisation

Monitor quiescent noise

End of monitor noise

Startup with a new setpoint

End of startup with new setpoint

Startup with PV at setpoint

End of startup with PV at setpoint

Zeigler-Nichols sequence

O (0O (N | OO AW N

Calulate new parameters

—_
o

Write update status

—_
—_

Autotune aborted

—_
N

Autotune completed

ZN_Stage

ZN_Stage indicates the state of the Autotuner's Ziegler-Nichols tuning stages.

Table 9-12 AT State Values

Find peak PV & reverse output

Find PV crossing PV1 & test again for dominant delay

Find peak PV & either reverse PV change or reverse output

Find PV crossing PV1 & adjust trend and output

Find peak PV & reverse output

0 N |0~ W

Find PV crossing PV1 & calculate new parameters

Table 9-13 Zn_State Values
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DRA_State
DRA_State indicates the state of the DRA adaptive tuner.

0 Allow settling

—_

Wait for trigger
Find peak 1

Find zero 1

Find peak 2
Find zero 2
Find peak 3
Find zero 3
Find peak 4
Find zero 4

N |0 IN (OO MWD

—
o

Find peak 5

—_
—_

End on zero 4 abort

—_
N

End on peak 4 found

—_
W

End on peak 5 abort

—
M

End on peak 5 found

—_
(6,]

Prepare update

Table 9-14 DRA State Values

DRA Last
DRA_Last records the last tuning strategy performed by the DRA adaptive tuner.

0 No change

1 Reduce Damping
2 Increase gain

3 Decreased Times
4 Increased Times
5 Decreased Gain

Table 9-15 DRA Last Values

LSAT F1

LSAT_F1 indicates the form of the process model which has been identified by
the LSAT.
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Proc_Delay

Proc_Delay is the estimated delay time of the open-loop system which has been
estimated by the Autotuner.

Status

Status provides an indication of the function of the PID_Auto function block. it
can have eight possible states:

OK (0): The function block is operating normally

SnsrBrk (1):  An external sensor break has been detected
PV_High (2): The Process_Val is greater than Span_High +10%
PV_Low (3): The Process_Val is less than Span_Low -10%
SP_High (4): The Setpoint is greater than Span_High

SP_Low (5): The Setpoint is less than Span_Low

GainNeg (6): The Prop_Band has been set with a negative value, or Span_High
has been set less than Span_Low

GainHi (7):  The Prop_Band has been set with too small a value or the span of
the function block has been set too small, resulting in a very large
gain.
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Parameter Attributes

Name Type Cold Read Write Type Specific
Start Access Access Information
AT _Out_High REAL 0 Config Config High Limit |Output High
Low Limit AT Out_Low
AT _Out_Low REAL 0 Config Config High Limit |AT_Out_High
Low Limit  |AT_Out_Low
AT State SINT 0 Config High Limit 255
Low Limit 0
Break Output REAL 0 Oper Oper High Limit | Output_High
Low Limit Output_Low
Ch1 Ch2 D B |REAL 0 Oper Oper High Limit |10
Low Limit -10
Ch1_CT _Low TIME 0 Super Super High Limit |1d
Low Limit 0
Ch1 Cycle T TIME 5s Super Super High Limit |1d
Low Limit 0
Ch1_Output REAL 0 Oper High Limit |100
Low Limit  |The higher of O
or Output_Low
Ch2_CT Low TIME 0 Super Super High Limit |1d
Low Limit 0
Ch2 Cycle T TIME 5s Super Super High Limit |1d
Low Limit 0
Ch2_Linear BOOL Yes (1) Super Config Senses No (0)
Yes (1)
Ch2_Output REAL 0 Oper High Limit |The lower of O or

Low Limit | Output_High
-100

Table 9-16 PID_Auto Parameter Atftributes
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Name Type Cold Read Write Type Specific
Start Access Access Information
Control_Sig REAL 0 Config High Limit 100,000
Low Limit -100,000
CS_Pre_Limit REAL 0 Config High Limit 100,000
Low Limit -100,000
Cutback_High REAL 0 Super Super High Limit Span_High
Low Limit 0
Cutback_Low REAL 0 Super Super High Limit Span_High
Low Limit 0
Debump BOOL No (0) Super Config Senses No (0)
Yes (1)
Debump_Dis BOOL No (0) Config Config Senses No (0)
Yes (1)
Deriv_On_PV BOOL On_Err (0) |Config Config Senses On_Err (0)
On_PV (1)
Deriv_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
Derivative TIME 50s Oper Oper High Limit 01d _03h
Low Limit 0
Direct BOOL No (0) Config Config Senses No (0)
Yes (1)
DRA_Last SINT 0 Config High Limit 255
Low Limit 0
DRA_State SINT 0 Config High Limit 255
Low Limit 0
Error REAL 0 Super High Limit 100,000
Low Limit -100,000
Feed Forward REAL 0 Super Super High Limit 100
Low Limit -100
Feedback REAL 0 Config High Limit 100,000
Low Limit -100,000

Table 9-16 PID_Auto Parameter Attributes (continued)
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Name Type Cold Start Read Write Type Specific
Access Access Information
Inhibiter REAL 0 Oper Oper High Limit 1
Low Limit 0
Integral TIME 5m Oper Oper High Limit 01d_03h
Low Limit 0
Integral_Hold BOOL No (0) Config Config Senses No (0)
Yes (1)
Integral_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
LSAT F1 REAL 0 Config High Limit 100,000
Low Limit 0
Manual BOOL Manual (1) |Oper Oper Senses Auto (0)
Manual (1)
Manual_Reset REAL 0 Oper Oper High Limit 100
Low Limit -100
MTC REAL 30 Config Config High Limit 100,000
Low Limit 0.1
Nerror REAL 0 Super High Limit 100,000
Low Limit -100,000
Out_Rate En BOOL No (0) Oper Config Senses No (0)
Yes (1)
Output REAL 0 Oper Oper High Limit Output_High
Low Limit Output_Low
Output_High REAL 100 Oper Oper High Limit 100
Low Limit Output_Low
Output_Low REAL 0 Oper Oper High Limit Output_High
Low Limit -100
Output_Rate REAL 10 Oper Oper High Limit 10,000
Low Limit 0.1

Table 9-16 PID_Auto Parameter Attributes (continued)
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Name Type Cold Read Write Type Specific
Start Access Access Information
Param_Change |BOOL No (0) Super Config Senses No (0)
Yes (1)
Proc_Delay TIME 0 Config High Limit 1d
Low Limit 0
Process_Vall REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Prop_Band REAL 5% Oper Oper High Limit 10,000
Low Limit 0.1
PropUnits BOOL PctSpan (0) |Oper Oper Senses PctSpan (0)
EngUnts (1)
Q REAL 0.4 Config Config High Limit 100,000
Low Limit 0
Ramp_Rate REAL 0 Oper Oper High Limit 10,000
Low Limit 0
Roamp_Units ENUM / Second (0) | Oper Super Senses / Second (0)
/ Minute (1)
/ Hour (2)
/ Day (3)
Rel Ch2 Gain |REAL 1 Oper Oper High Limit 10
Low Limit 0.1
Sensor_Break BOOL Ok (0) Oper Super Senses Ok (0)
Break (1)
Setpoint REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
SP_FF_Enable BOOL No (0) Super Config Senses No (0)
Yes (1)
SP_FF Trim REAL 0 Config Config High Limit 100,000
Low Limit -100,000
PV_FF Enable BOOL No(0) Super Config Sences No (0)
Yes (1)
PV_FF Trim REAL 0 Config Config High Limit 100,000
Low Limit -100,000
Span_High REAL 100 Config Config High Limit 100,000
Low Limit Span_Low

Table 9-16 PID_Auto Parameter Attributes (continued)

PC 3000 Function Blocks

9-143




PID_Auto

Name Type Cold Start Read Write Type Specific
Access Access Information
Span_Low REAL 0 Config Config High Limit Span_High
Low Limit - 100,000
Status ENUM Ok (0) Oper Senses Ok (0)
SnsrBrk (1)
PV_High (2)
PV_Low (3)
SP_High (4)
SP_Low (5)
GainNeg (6)
GainHi (7)
Target SP REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Track Enable BOOL No (0) Super Config Senses No (0)
Yes (1)
Track Value REAL 0 Super Config High Limit Output_High
Low Limit Output_Low
Trigger_Val REAL 0.1 Config Config High Limit 100,000
Low Limit 0
Tune Type ENUM None (0) Config Config Senses None (0)
AT (1)
DRA (2)
LSAT (3)
DRA LS (4)
AT DRA (5)
AT _LSAT (6)
AT D L(7)
Tuning BOOL Off (0) Super Senses Off (0)
Active (1)
Zn_Stage SINT 0 Config High Limit 255
Low Limit 0

Table 9-16 PID_Auto Parameter Atftributes (continued)
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Figure 9-53 VP_Auto Function Block Diagram

BOOL

BOOL

REAL

REAL

REAL

REAL

REAL

ENUM

TIME

TIME

TIME

REAL

TIME

TIME

REAL

REAL

REAL

BOOL

SINT

SINT

SINT

SINT

PC 3000 Function Blocks

9-145



VP_Auto

N

BOOL

REAL

REAL

BOOL

e,

BOOL

ENUM _|: Tune_ Type..... Tune_ Type

Param_ Chan..Param_ Change

BOOL

REAL

REAL

REAL

epeate

BOOL Integral_Hold

Pot_ Brea SAT F1
Pot_ Limit_ coc_ Delay
Nerror
Debump......... ... .Debump

Debump Di Status

Trigger_ Val..Trigger_ Val

REAL

TIME

REAL

BOOL

ENUM

ENUM

BOOL

REAL

REAL

REAL

Figure 9-53 VP_Auto Function Block Diagram (continued)

Functional Description

The VP_Auto function block implements the proportional plus integral plus
derivative control algorithm and the Auto and Adaptive tuning algorithms that are
also used in the Eurotherm 900 series control instruments. The control algorithm is
an enhanced version of that employed in the PID function block. The basic PID

algorithm can be represented by the equation:

10000
Output = ( )(E(t) - [E(t).dt + Derivative %)
J

Span *Prop_Band Integral

where E (t) is given by Setpoint - Process_Val and Span is given by Span_High -
Span_Low. In the PC3000, this basic algorithm is supported by additional
functionality to improve the control performance and to enable the function block

to be configured to control a wide range of systems.
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The function block's valve positioner stages use a boundless, or algorithm, which
has been incorporated because it does not require position feedback from the
valve, since this can often be unreliable. A model of the valve is included for valve
position output control. Potentiometer position feedback can be used in
conjunction with the valve model. In this mode of operation, the valve model
position is used for control, with the actual valve position being used to limit the
movement of the motor. This enables the controller to continue operating if the
feedback potentiometer should fail.

VP_Auto is a complex function block. Achieving the optimum performance from
the block requires that the controller, output stage and tuners are correctly
configured and activated. A description of the separate elements of the function
block is given below.

Autotune

L.S.A.T.

Orne-Shot Tuner

Have farm
Analysis Tuner

Least Squares
Adaptive Tuner

N

Tuner Overseer

Update
Time

Mirimum
On Time

Mirnimum
On Time

SP + Flo ! | Update | 4 Minimum onf—4++ Raise
Algorithm|; | Filter | . Time Checklel iy | ower
: Hysteresis :
PLI é Lglwve é
i Mode | i
Trawe|
Time
Figure 9-54 Block Diagram of the Principal VP_Auto Functionality.
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Function Block Attributes.

TYPE: et 20 60

Class:...ccoceeeeeeereeeeecieeeee s CONTROL

Default Task: ......cccceeeeuneenee. Task 2

Short List: ccoveevveeiiiinnnen. Setpoint, Process_Val, Manual, Output

Memory Requirements: ...... 1930 Bytes
Execution Time: ................. 1.8 ms when not tuning

3.73 ms maximum when tuning
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Parameter Descriptions

AT _State:

Break_Output:

Control_Sig:
CS_Pre_Limit

Cutback_High:

Cutback_Low:
Debump:
Debump_Dis:
Deriv_On_PV:
Deriv_Out:
Derivative:
Direct:
DRA_Last:
DRA_State:

Error:

Feed Forward:

Feedback:
Integral:
Integral_Hold:
Integral_Out:
Lower:

LSAT _F1:

Manual:

Manual_Reset:

MTC:

Min_On_Time:

Diagnostic
Configuration
Diagnostic
Diagnostic
Control
Control
Dynamic Input
Dynamic Input
Configuration
Diagnostic
Control
Configuration
Diagnostic
Diagnostic
Diagnostic
Dynamic Input
Diagnostic
Control
Control
Diagnostic
Output
Diagnostic
Control
Control
Tuning

Configuration

Nerror:

Output:

Param_Change:

Pot Break:
Pot_Enable:
Pot_Limit_Hi:
Pot_Limit_Lo:
Pot_Position:
Process Val:
Proc_Delay:
Prop Band:
Q:

Raise:

Sensor_Break:

Setpoint:
Span_High:
Span_Low:
Status:
Travel Time:
Trigger Val:
Tune_Type:
Tuning:

Update_Time:

VP_Model
Zero Deriv:

ZN_Stage:

Diagnostic
Output

Tuning

Pot Feedback
Pot Feedback
Pot Feedback
Pot Feedback
Pot Feedback
Dynamic Input
Diagnostic
Control
Tuning

Output
Dynamic Input
Dynamic Input
Configuration
Configuration
Diagnostic
Configuration
Tuning

Tuning

Tuning
Configuration
Diagnostic
Control

Diagnostic

Table 9-17 Parameter Classification
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Controller Configuration Parameters

For optimum operation, the controller must be configured to the type of control
problem that it is to be applied to. This configuration is performed by appropriate
setting of the input parameters. The use of these configuration parameters is
described below.

Span_High and Span_Low.

Span_High and Span_Low define the maximum and minimum limits of the
working range of the function block. Generally these are set to values which
represent physical boundaries in the operation of the process, such as the
calibrated range of a transducer, or the safe limits of a pressure vessel. The
proportional band of the PID algorithm is defined as a percentage of the span of
the function block, which is found by subtracting Span_Low from Span_High. If
the Process_Val moves outside the span the function block will enter a sensor
break condition.

Direct

Direct defines whether the function block is direct acting or reverse acting. If the
function block is direct acting, the Output will tend to increase if the Process_Val
is greater than the Setpoint. If the function block is reverse acting, the Output will
tend to increase if the Process_Val is less than the Setpoint.

Deriv_On_PV
Deriv_On_PV defines whether the derivative action is responds to changes to

Process_Val only (On_PV (1)) or to changes to the difference between the
Setpoint and the Process_Val (On_Err (0)).

Update Time

Update_Time defines the sample time of the valve positioner output stages.
Generally, this should be set to one tenth of the Travel_Time. Increasing the
Update_Time will reduce the amount of activity of the valve, but can also reduce
the accuracy of the control. Similarly, reducing the Update_Time can improve the
control performance, but will also increase the amount of activity of the valve.
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Travel Time

Travel _Time is the amount of time it takes the valve to travel from the lower
operating position to the upper operating position.

Min_On_Time
Min_On_Time defines the minimum time that the valve must remain in a state of
opening, closing or remaining stationary.

Break Output

Break_Output defines the output level to which the function block will default
when a sensor break condition has been detected. This is either triggered by
Sensor_Break being set to Break (1), or by the Process_Val moving outside the
span of the function block.

Potentiometer Feedback Parameters

Pot_Position

Pot_Position is the input to which the valve position feedback potentiometer is
connected.

Pot_Enable

When Pot_Enable is set to Yes (1), the potentiometer feedback algorithm is
activated. Setting Pot_Enable to No (0) causes the function block to operate
without potentiometer feedback.

Pot Break

Pot_Break provides an external trigger to indicate that the potentiometer feedback
has become disconnected, or is faulty. Setting Pot_Break to Yes (1) indicates a
fault condition has occured. Setting Pot_Break to No (0) indicates the sensor is
functioning normally.

Pot Limit Hi
Pot_Limit_Hi defines the upper operating position of the valve.
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Pot_Limit Lo
Pot_Limit_Lo defines the lower operating position of the valve.

Dynamic Input and Output Parameters

Setpoint and Process_Val

The Process_Val is the controlled variable of the function block and the Setpoint is
the target value against which the Process_Val is controlled. The PID algorithm
acts to reduce the difference between the Setpoint and the Process_Val to zero.

Output, Raise and Lower

When the function block is operating in Manual mode, Output serves as an input
which can be used to directly control the Raise and Lower outputs to the valve. In
Auto mode, Output is automatically set to Off (0).

Sensor_Break

The sensor break input provides a trigger which can be used to set the function
block into a sensor break condition. When the function block is in sensor break,
the Output will be set to Break_Output and the PID algorithm will be disabled. On
leaving the sensor break condition, the algorithm will hold the output at
Break_Output for sixteen samples, to ensure that the sensor has been properly re-
acquired.

Debump and Debump Dis

Debump functionality is employed by the function block to ensure that changes to
operating conditions or control parameters do not result in sharp deviations of the
Output signal. In the PC3000, debumping is automatically carried out whenever
changes are made to Prop_Band, Derivative, Span_High, Span_Low,
Ch1_Ch2_D_B, Rel_Ch2_Gain, or when the mode of the function block is
switched between Manual and Auto. The parameter Debump can be used to trigger
debumping for other changes, such as changes to the Setpoint. Debump_Dis can
be used to disable the debump functionality, which will allow the Output to "kick"
in response to changes in the parameters listed above.
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Control Parameters

The function block has several parameter which are not intended to be changed
dynamically, but instead control the operation of the algorithm. These include the
tuning parameters, such as Prop_Band, as well as booleans which are used to
change the mode of operation. These parameters are described below.

Manual

Manual is used to select whether the function block operates in Manual or Auto
mode. In Manual mode, the PID algorithm is disabled and the value of Output is
taken directly from its input. In Auto mode the full controller functionality is
active.

PropUnits (Version 3.00 onwards)

PropUnits is to define whether the Prop_Band is defined as a percentage of the
controller span (PctSpan (0)) or in engineering units (EngUnts (1)).

Prop_Band
Prop_Band is the proportional band of the PID control algorithm.

Prior to Version 3.00, the proportional band could only be defined as a percentage
of span. The engineering units mode was not supported.

If PropUnits is set to a percentage of span (PctSpan (0)), the proportional band is
defined as the percent of the total span of the controller for which a control error
will produce an output signal equivalent to the maximum output of the instrument.
For example, if Span_High is 1000, Span_Low is 0, Setpoint is 500,
Process_Val is 490 and Prop_Band is 1%, a proportional only reverse acting
controller will produce an output of +100%, because the control error will be 10
units, which is one proportional band.

Note:- When defined as a percentage of span, the the proportional gain is given
by:

10,000
(Span_High - Span_Low) *Prop_Band

Gain =

If PropUnits is set to engineering units (EngUnts (1)), the proportional band is
defined as the magnitude of the control error which will produce an output signal
equivalent to the maximum output of the instrument. For example, if Setpoint is
500°C, Process_Val is 495°C and Prop_Band is 5°C, a proportional only reverse
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acting controller will produce an output of +100%, because the control error is 5°C
which is equal to one proportional band.

When defined in Engineering units, the proportional gain is given by:

Gain = 100
Prop_Band

Integral

Integral is the integral time constant of the PID control algorithm. Integral time is
defined as the time period in which the part of the output signal due to integral
action increases by an amount equal to the part of the output signal due to
proportional action, for a constant error state.

Derivative

Derivative is the derivative time constant of the PID control algorithm. Derivative
time is defined as the time interval in which the part of the output signal due to
derivative action increases by an amount equal to the part of the output signal due
to proportional action, when the control error is changing at a constant rate.

Feed Forward

Feed_Forward is added directly to the output of the PID algorithm, before the
output limiting and dual output conversions are performed.

Manual_Reset

Manual_Reset is only active when Integral is set to zero. It provides an offset to
the Output, which can be used to reduce the control error to zero when integral
action is not employed.

Cutback High and Cutback Low

Cutback can be employed to reduce the amount of time it takes the Process_Val to
respond to large changes in Setpoint and to limit the overshoot that can occur
during the transient period. Cutback_High operates when the Process_Val is
initially greater than the target Setpoint and Cutback_Low operates when the
Process_Val is initially less than the target Setpoint. The units of Cutback_High
and Cutback_IL.ow are engineering units. Cutback operates by forcing the Output
to its appropriate maximum or minimum limit in response to a Setpoint change
which is greater than the cutback band. As the Process_Val approaches the
Setpoint, the control error (Setpoint - Process_Val) reduces to less than the
cutback value and normal control is resumed.
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Integral Hold

Integral_Hold enables the integral output to be frozen at its current value. It will
remain constant throughout the period that Integral_Hold is enabled.

The VP_Auto tuning algorithms

The Autotune Algorithm

End of Autotone
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Figure 9-55 Heat only autotune cycles.
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The autotune algorithm is a one shot tuner which was previously implemented in
the Eurotherm 818 and 815 instruments. The principles of operation of this tuner
are described in detail in The PC3000 Control Overview earlier in this chapter.

When the autotune algorithm is selected the PID control algorithm is disconnected
from the process, with the autotuner driving the controller's outputs directly using
ON/OFF control. On selection of autotune, if the current process value is within
1% of setpoint, the outputs are frozen at their existing values, otherwise the
outputs are set to zero. This output value is held for one minute, during which the
autotuner monitors the process to asses the noise level and the action of the
process value. During this first minute the operator can select the setpoint at which
the tuning is to be performed. This can be the current setpoint, if required, or a
setpoint greater than or less than the current value.

When the one minute monitoring cycle has elapsed, the autotuner cycle will move
into its active phase. If the current setpoint is more than 1% of span greater than
the current process value, a tune up to setpoint will be performed. If the setpoint is
more than 1% of span less than the current process value, a tune down to setpoint
will be performed. If the current setpoint is within 1% of span of the process value,
a tune at setpoint will be performed. These are described in detail in the references
quoted above. The process value and output curves for the three types of autotune
cycles, for a heat only instrument, are shown in the figure below.

At the end of the autotune cycle, the following parameters are calculated and
loaded into the controller:

Proportional Band
Integral time

Derivative time

Cutback High (tune down to setpoint only)
Cutback Low (tune up to setpoint only)
Trigger Val (used by DRA and LSAT)
MTC (used by LSAT)

Q (used by LSAT)

The Disturbance Response Analysis Algorithm (DRA)

The DRA is an adaptive tuner which was previously implemented in the
Eurotherm 818 instrument. It is an elementary expert system, which acts by
identifying patterns in the error (setpoint—process value) response and adjusting
the controller parameters to compensate for responses which are slow or
oscillatory. Unlike the autotuner, DRA does not drive the controller outputs
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directly.

DRA is triggered into monitoring the control response when the absolute error
exceeds the Trigger Value, which can be set manually but is automatically set by
the autotuner. Once triggered by a disturbance, such as a setpoint change or a load

disturbance, DRA monitors up to two cycles of oscillation of the error before
deciding what, if any, modification of the control terms is required. The ratio of
peaks of the error (the damping ratio) is the main criterion which is used to decide
whether retuning is required. If the amplitude of the peaks is small, the tuner
disables itself and will not retune the controller parameters. In the 818
implementation of DRA, if the algorithm determined that retuning was necessary,
the Proportional Band, Integral time and Derivative time were adjusted. In the
PID_Auto implementation, DRA also adjusts the LSAT referencing terms MTC
and Q. MTC is adjusted in series with the Integral and Derivative times. Q is
adjusted with the Proportional Band.

If the response is analysed to be oscillatory, the oscillation time is used to
determine whether the gain, the integral and derivative times, or both the gain and
the times require adjustment. The figure below shows how the tuner determines
which adaption strategy to adopt, which is calculated according to the values of the
existing PID parameters.

DRA adaptive tune strategy selection.

The Least Squares Adaptive Tuner algorithm (LSAT).

The LSAT algorithm is an adaptive tuner which, like the DRA algorithm, does not
drive the controller outputs directly, but instead tunes the PID control coefficients.
The LSAT should be considered to consist of two main parts:

{1} A process model identifier
{2} A controller designer.

The algorithm looks at the controller output and the process value. It continually
feeds the controller output into an internal model of the process and compares the
process value predicted by this model with the actual process value. The recursive
least squares algorithm is used to adjust the parameters of the model so that the
predicted process value matches the actual process value. In this way the model is
continuously being fine tuned so that it matches the actual process being
controlled. The model is then used by the controller designer to define and set the
optimum PID parameters for the process being controlled. This employs a model—
reference approach, in which the closed—loop performance of the system is
optimised against that of the internal reference closed—loop model. A block
diagram of the LSAT algorithm is shown in the figure below.
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Figure 9-56 Block diagram of the Least Squares Adaptive Tuner.

An advantage of the LSAT is that, unlike the DRA, it does not require large
process disturbances or step setpoint changes in order to act. It can fine tune the
controller during regulatory control and during setpoint ramps, since it is able to
filter elements of the process noise signal and utilise these in the model
identification. The fine tuning action of the LSAT is an important feature when
implemented in the PID_Auto adaptive tuner. It enables it both to complement the
coarser tuning action of the DRA and to fine tune the parameters set by the
Autotuner.

The procedure of model identification through prediction and design through
model reference enables the LSAT to continuously tune the controller parameters
during on-line control operations. However, the LSAT algorithm is not able to
determine the structure of the process model, it fits parameters to a model whose
structure is pre—defined. This restriction could limit its suitability for
implementation as a stand—alone general purpose adaptive tuner, so the algorithm
has been developed to adapt its identification and parameter design in response to
external referencing. This takes the form of two parameters — "MTC", a process
time constant scaler from which the LSAT determines its sample frequency and
"Q", which gives an indication of the unmodelled (high frequency) process
coefficients. Although this information can be input manually, it requires a high
level of LSAT expertise and process knowledge, so the Autotune and DRA
algorithms have been developed to identify MTC and Q and to prime the LSAT
with these values. The resulting three tuner interaction forms the "Composite"
tuner.

The Operation of the VP_Auto Tuners.
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Figure 9-57 Autotune-Adaptive tune convergence sequence during a start up tune.

The Composite tuner combines the functionality of the three tuners described
above, Autotune, DRA and LSAT. It has been developed to enable the strengths of
the three algorithms to be utilised to provide the optimum tuning performance
under the widest range of control conditions. The functions performed by the three
tuning algorithms of the composite tuner may be summarised as:

{i} Autotune: initial one—shot tuning of PID parameters, coarse identification of
process model, identification of process noise levels.

{ii} DRA: coarse adaption to changes in process operating conditions, coarse
adjustment of LSAT reference model, adjustment of controller when necessary in
response to large process disturbances.

{iii} LSAT: fine tuning of PID parameters after Autotune and during adaptive tune
sequence, fine tuning during setpoint ramps and in response to small process
changes or small disturbances.

Selecting the Autotuner will result in the one—shot tuner sequence being activated.
Selecting Adaptive tune will activate both the DRA and the LSAT adaptive tuning
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algorithms together. It should be noted that the optimum tuning performance
will be obtained when AUTO/TUNE precedes ADAPT/TUNE. The Autotune
algorithm has been enhanced to provide the initialisation that LSAT requires. If
Autotune does not precede Adaptive, then DRA is required to initialise LSAT,
which can require several DRA adaption sequences to take place and can result in
a very slow tuning of the controller.

When Autotune followed by Adaptive tune is selected, an Autotune sequence is
performed followed by an automatic switch to Adaptive tune. The Adaptive Tune
sequence then begins by disabling the LSAT until the estimator has converged on
the process model. Once the LSAT has converged, the Adaptive Tune sequence
then continues with both the DRA and the LSAT algorithms tuning the controller,
under the guidance of the tuner overseer software.

Function Block Tuning Parameters

Tune _Type

Tune_Type defines which tuner, if any, is active. It can be set to one of eight
values:

None (0): No tuners active.

AT (1): Autotuner active.

DRA (2): Adaptive tune (DRA and) active.

LSAT (3): Adaptive tune (DRA and LSAT) active.
DRA_LS (4): Adaptive tune (DRA and LSAT) active.
AT_DRA (5): Autotuner followed by Adaptive tuner (DRA) active.

AT_LSAT (6): Autotuner followed by Adaptive tuner (DRA and LSAT)
active.

AT_D_L (7): Autotuner followed by Adaptive tuner (DRA and LSAT) active.

Param_Change

Param_Change is set by the tuners to indicate that the value of one of the
parameters has been changed. Once it has been changed by a tuner to Yes (1), it
must be reset externally to No (0).
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Trigger Val

Provides an indication to the Adaptive tuner of the amount of process noise which
is present on the Process_Val. It is automatically set by the Autotuner during the
tuning sequence, but can be set manually by the user.

Tuning

This provides an indication that the tuners are functioning. If Auto or Adaptive
tuners are active, Tuning will be Active (1), else Tuning will be Off (0)

Function Block Diagnostic Parameters

MTC
Is the LSAT reference model time constant.

Q
This is the LSAT reference detuning factor.

CS_Pre_Limit

This is the output of the PID controller after the Feed_Forward has been added,
but before Output limiting has been performed.

Control_Sig

Control_Sig is the sum of the proportional, integral, derivative and feed forward
components after being high, low and rate of change limited, but before the dual
output relative gain and deadband have been added.

Nerror, Integral_Out and Deriv_Out

These are the outputs of the proportional integral and derivative components
respectively.

Feedback

Feedback is the value of the signal which is fed back into the PID to indicate the
actual signal that is output by the controller.

Error
The difference between the Process_Val and the Setpoint.
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VP_Model
VP_Model is the output of the internal model of the valve

AT State
Indicates the state of the Autotuner.

0 Reset

1 Initiatisation

Monitor quiescent noise

End of monitor noise

Startup with a new setpoint

End of startup with new setpoint

Startup with PV at setpoint

End of startup with PV at setpoint

Zeigler-Nichols sequence

N (0| N (o AW (N

Calulate new parameters

j—
o

Write update status

Avutotune aborted

—_
—_

N

Autotune completed

Table 9-18 AT _State Values
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ZN_Stage

ZN_Stage indicates the state of the Autotuner's Ziegler-Nichols tuning stages.

Find peak PV & reverse output

Find PV crossing PV1 & test again for dominant delay

Find peak PV & either reverse PV change or reverse output

Find PV crossing PV1 & adjust trend and output

Find peak PV & reverse output

0| N || [~ W

Find PV crossing PV1 & calculate new parameters

DRA State

Table 9-19 Zn_State Values

DRA _State indicates the state of the DRA adaptive tuner.

0 Allow settling

1 Wait for trigger

2 Find peak 1

3 Find zero 1

4 Find peak 2

5 Find zero 2

6 Find peak 3

7 Find zero 3

8 Find peak 4

9 Find zero 4

10 Find peak 5

11 End on zero 4 abort
12 End on peak 4 found
13 End on peak 5 abort
14 End on peak 5 found
15 Prepare update

Table 9-20 DRA _State Value
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DRA Last
Records the last tuning strategy performed by the DRA adaptive tuner.

0 No change

1 Reduce Damping
2 Increase gain

3 Decreased Times
4 Increased Times
5 Decreased Gain

Table 9-21 DRA Last Value

LSAT F1
Indicates the form of the process model which has been identified by the LSAT.

Proc_Delay

This is the delay time of the open-loop system which has been estimated by the
Autotuner.

Nerror
Nerror is the output of the proportional component of the function block.

Status

Provides an indication of the function of the PID_Auto function block. it can have
eight possible states:

OK (0): The function block is operating normally

SnsrBrk (1):  An external sensor break has been detected

PV_High (2): The Process_Val is greater than Span_High +10%

PV_Low (3): The Process_Val is less than Span_Low -10%
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SP_High (4): The Setpoint is greater than Span_High
SP_Low (5): The Setpoint is less than Span_Low

GainNeg (6): The Prop_Band has been set with a negative value, or Span_High
has been set less than Span_Low

GainHi (7): The Prop_Band has been set with too small a value or the span of
the function block has been set too small, resulting in a very large
gain.
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Parameter Attributes

Name Type Cold Start Read Write Type Specific
Access | Access Information
AT State SINT 0 Config High Limit 255
Low Limit 0
Break Output ENUM Lower (1) Oper Oper Senses Off (0)
Lower (1)
Raise (2)
Control_Sig REAL 0 Config High Limit 100,000
Low Limit -100,000
CS_Pre_Limit REAL 0 Config High Limit 100,000
Low Limit -100,000
Cutback High REAL 0 Super Super High Limit Span_High
Low Limit 0
Cutback Low REAL 0 Super Super High Limit Span_High
Low Limit 0
Debump BOOL No (0) Super Config Senses No (0)
Yes (1)
Debump_Dis BOOL No (0) Config Config Senses No (0)
Yes (1)
Deriv_On_PV BOOL On_Err (0) |Config Config Senses On_Err (0)
On_PV (1)
Deriv_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
Derivative TIME 50s Oper Oper High Limit 01d _03h
Low Limit 0
Direct BOOL No (0) Config Config Senses No (0)
Yes (1)
DRA_Last SINT 0 Config High Limit 255
Low Limit 0
DRA_State SINT 0 Config High Limit 255
Low Limit 0
Table 9-22 VP_Auto Parameter Attributes
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Name Type Cold Start Read Write Type Specific
Access Access Information
Error REAL 0 Super High Limit 100,000
Low Limit -100,000
Feed Forward REAL 0 Super Super High Limit 100
Low Limit -100
Feedback REAL 0 Config High Limit 100,000
Low Limit -100,000
Integral TIME 5m Oper Oper High Limit 01d_03h
Low Limit 0
Integral_Hold BOOL No (0) Config Config Senses No (0)
Yes (1)
Integral_Out REAL 0 Config High Limit 100,000
Low Limit -100,000
Lower BOOL Off (0) Oper Senses Off (0)
Lower (1)
LSAT F1 REAL 0 Config High Limit 100,000
Low Limit 0
Manual BOOL Manual (1) |Oper Oper Senses Auto (0)
Manual (1)
Manual_Reset REAL 0 Oper Oper High Limit 100
Low Limit -100
Min_On _Time TIME 100ms Oper Oper High Limit 5s
Low Limit 100ms
MTC REAL 30 Config Config High Limit 100,000
Low Limit 0.1
Nerror REAL 0 Super High Limit 100,000
Low Limit -100,000
Output ENUM Off (0) Oper Oper Senses Off (0)
Lower (1)
Raise (2)
Param_Change BOOL No (0) Super Config Senses No (0)
Yes (1)

Table 9-22 VP _Auto Parameter Attributes (continued)
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Name Type Cold Start Read Write Type Specific
Access | Access Information
Pot_Break BOOL No (0) Oper Super Senses No (0)
Yes (1)
Pot_Enable BOOL No (0) Oper Super Senses No (0)
Yes (1)
Pot_Limit_Hi REAL 100 Oper Super High Limit 100
Low Limit 0
Pot_Limit Lo REAL 0 Oper Super High Limit 100
Low Limit 0
Pot_Position REAL 0 Oper Super High Limit 100
Low Limit 0
Proc_Delay TIME 0 Config High Limit 1d
Low Limit 0
Process_Val REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Prop_Band REAL 5% Oper Oper High Limit 10,000
Low Limit 0.1
PropUnits BOOL PctSpan (0) | Oper Oper Senses PctSpan (0)
EngUnts (1)
Q REAL 0.4 Config Config High Limit 100,000
Low Limit 0
Raise BOOL Off (0) Oper Senses Off (0)
Raise (1)
Sensor_Break BOOL Ok (0) Oper Super Senses Ok (0)
Break (1)
Setpoint REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Span_High REAL 100 Config Config High Limit 100,000
Low Limit Span_Low
Span_Low REAL 0 Config Config High Limit Span_High
Low Limit -100,000

Table 9-22 VP_Auto Parameter Attributes (continued)
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Name

Type

Cold
Start

Read
Access

Write
Access

Type Specific
Information

Status

ENUM

ok (0)

Oper

Senses Ok (0)
SnsrBrk (1)
PV_High (2)
PV_Low (3)
SP_High (4)
SP_Low (5)
CGainNeg (6)
GainHi (7)

Travel_Time

TIME

20s

Oper

Oper

High Limit 16m_40s
Low Limit 5s

Trigger Val

REAL

0.1

Config

Config

High Limit 100,000
Low Limit 0

Tune_Type

ENUM

None (0)

Config

Config

Senses None (0)
AT (1)

DRA (2)
LSAT (3)
DRA LS (4)
AT DRA (5)
AT LSAT (6)
AT D L(7)

Tuning

BOOL

Off (0)

Super

Senses Off (0)
Active (1)

Update_Time

TIME

1s

Oper

Oper

High Limit 20s
Low Limit 100ms

VP_Model

REAL

50

Config

High Limit 100
Low Limit 0

Zn_Stage

SINT

Config

High Limit 255
Low Limit 0

Table 9-22 VP _Auto Parameter Attributes (continued)
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PIDHEATCOOL FUNCTION BLOCK

REAL

REAL

REAL

REAL

BOOL

REAL

BOOL

REAL

REAL

BOOL

TIME

TIME

REAL

REAL

REAL

REAL

REAL

ENUM

NO000000000000000]

PIDHeatCool
Span_High Chl_Output REAL
Span_Low Ch2_Output REAL
Process Val
Setpoint
Manual
OQutput........ee... Output REAL
Output_High
Output_Low
Prop_ Band.......... Prop_Band REAL
PropUnits
Integral.....oou.e... Integral TIME
Derivative........ Derivative TTME
Manual Reset
Cutback_High....Cutback High REAT
Cutback _Low...... Cutback Low REAL
Rel_Ch2_Gain....Rel Ch2_Gain REAL
Chl_Ch2_D B
Tune Tyvpe.......... Tune Type ENUM

Figure 9-58 PIDHeatCool Function Block Diagram
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Functional Description

The PIDHeatCool function block implements the proportional plus integral plus
derivative control algorithm and the Auto and Adaptive tuning algorithms that are
also used in the Eurotherm 900 series control instruments.and in the other PC3000
Control function blocks (PID, VP, PID_Auto and VP_Auto).

The PIDHeatCool function block is a cut down version of the PID_Auto function
block. The interface parameters which are not commonly used have been removed
to provide a simpler function block suitable for use in a wide range of applications.
Those interface parameters which have been removed are set internally to their
default values. For a full description of these parameters, reference should be made
to the PID_Auto function block description.

Function Block Attributes.

TYPC et 20 51

Class: .oooevveeerrrenreerireneeens CONTROL

Default Task: ....cccevuuereennnnens Task 2

Short List: c..eeveeeveeenniiiennnnes Setpoint, Process_Val, Manual, Output

Memory Requirements: ...... 2056

Parameter Descriptions

Span_High and Span_Low.

Span_High and Span_Low define the maximum and minimum limits of the
working range of the function block. Generally these are set to values which
represent physical boundaries in the operation of the process, such as the
calibrated range of a transducer, or the safe limits of a pressure vessel. The
proportional band of the PID algorithm can be defined as a percentage of the span
of the function block, which is found by subtracting Span_Low from Span_High.

Setpoint and Process Val

The Process_Val is the controlled variable of the function block and the Setpoint
is the target value against which the Process_Val is controlled. The PID algorithm
acts to reduce the difference between the Setpoint and the Process_Val to zero.
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Manual

Manual is used to select whether the function block operates in Manual or Auto
mode. In Manual mode, the PID algorithm is disabled and the value of Qutput is
taken directly from its input. In Auto mode the full controller functionality is
active.

Output, Ch1_Output and Ch2_ Output

Che Output 100 | ~hl Output
50 - e
'_......25 | .-..-_."
-100 =50 2% 0 25 50 100
Coutput
Figure 9-59 Dual Output Relationship, with Unity Rel Ch2_ Gain and zero
Ch1 Ch2 D B

The PID function block channel can be configured for either single or dual channel
operation. In single channel operation, the control is on-Output, which is limited
within the range + 100 % to 0 % by the parameters Qutput_High and
Output_Low. Dual channel operation is designed for systems such as heat-cool
applications, in which negative values of Qutput must be output to a refrigeration
unit as absolute values to increase the refrigeration rate. For dual channel
operation Output_Low is set to - 100%.

Output_High and Output Low

Output_High and Output_Low define the upper and lower limits of Output
They must both be set within the range -100% to +100%, with Output_High
being greater than or equal to Qutput_Low. When the function block is being
used for dual output operation, Chl_Qutput and Ch2_QOutput are related to
Output as shown in Figure 9-59, with Output being bounded by Output_High
and Output_Low.
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Rel Ch2 Gain and Ch1 Ch2 D B

When the function block is being used for dual channel control, the full
relationship between Ch2_Qutput and Output is given by:

Ch2_Output = (Output + Ch1_Ch2_D_B) * Rel_Ch2_Gain

Rel_Ch2_Gain is intended for use in non linear dual output control situations,
such as heat / cool systems, to compensate for the differing gains of the equipment
being driven by the two output channels. Chl_Ch2_D_B introduces a deadband
between the two output channels, which can either be set to a positive value to
provide a region in which neither channel is active, or to a negative value to
provide a region of overlap in which both outputs are active.

Manual Reset

Manual_Reset is only active when Integral is set to zero. It provides an offset to
the Output, which can be used to reduce the control error to zero when integral
action is not employed.

Cutback High and Cutback Low

Cutback can be employed to reduce the amount of time it takes the Process_Val
to respond to large changes in Setpoint and to limit the overshoot that can occur
during the transient period. Cutback_High operates when the Process_Val is
initially greater than the target Setpoint and Cutback_Low operates when the
Process_Val is initially less than the target Setpoint. The units of Cutback_High
and Cutback_Low are engineering units. Cutback operates by forcing the
Output to its appropriate maximum or minimum limit in response to a Setpoint
change which is greater than the cutback band. As the Process_Val approaches the
Setpoint, the control error (Setpoint - Process_Val) reduces to less than the
cutback value and normal control is resumed.

PropUnits

PropUnits is to define whether the Prop_Band is defined as a percentage of the
controller span (PctSpan (0)) or in engineering units (EngUnts (1)).

Prop_Band

Prop_Band is the proportional band of the PID control algorithm. If PropUnits is
set to a percentage of span (PctSpan (0)), the proportional band is defined as the
percent of the total span of the controller for which a control error will produce an
output signal equivalent to the maximum output of the instrument. For example, if
Span_High is 1000, Span_Low is 0, Setpoint is 500, Process_Val is 490 and
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Prop_Band is 1%, a proportional only reverse acting controller will produce an
output of +100%, because the control error will be 10 units, which is one
proportional band.

Note:- When defined as a percentage of span, the the proportional
gain is given by:

10,000
(Span_High - Span_Low) *Prop_Band

Gain =

If PropUnits is set to engineering units (EngUnts (1)), the proportional band is
defined as the magnitude of the control error which will produce an output signal
equivalent to the maximum output of the instrument. For example, if Setpoint is
500°C, Process_Val is 495°C and Prop_Band is 5°C, a proportional only reverse
acting controller will produce an output of +100%, because the control error is 5°C
which is equal to one proportional band.

When defined in Engineering units, the proportional gain is given by:

Gain = 100
Prop_Band

Integral

Integral is the integral time constant of the PID control algorithm. Integral time is
defined as the time period in which the part of the output signal due to integral
action increases by an amount equal to the part of the output signal due to
proportional action, for a constant error state.

Derivative

Derivative is the derivative time constant of the PID control algorithm. Derivative
time is defined as the time interval in which the part of the output signal due to
derivative action increases by an amount equal to the part of the output signal due
to proportional action, when the control error is changing at a constant rate.

Tune_Type

Tune_Type is used to control the various auto and adaptive tuning algorithms
available within the function block.

For a full description of these algorithms, reference should be made to the
PID_Auto function block.
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Parameter Atiributes

Name Type Cold Read Write Type Specific
Start Access Access Information
Ch1_Ch2 D B |REAL 0 Oper Oper High Limit |10
Low Limit -10
Ch1_Output REAL 0 Oper High Limit |100

Low Limit  |The higher of O
or Output_Low

Ch2_Output REAL 0 Oper High Limit |The lower of O or
Low Limit Output_High
-100
Cutback High REAL 0 Super Super High Limit |Span_High
Low Limit 0
Cutback Low REAL 0 Super Super High Limit |Span_High
Low Limit 0
Derivative TIME 50s Oper Oper High Limit |01d_03h
Low Limit 0
Integral TIME 5m Oper Oper High Limit |01d_03h
Low Limit 0
Manual BOOL Manual (1) |Oper Oper Senses Auto (0)
Manual (1)
Manual_Reset REAL 0 Oper Oper High Limit |100
Low Limit -100
Output REAL 0 Oper Oper High Limit |Output High
Low Limit Output_Low
Output_High REAL 100 Oper Oper High Limit |100
Low Limit | Output_Low
Output_Low REAL 0 Oper Oper High Limit |Output_High
Low Limit -100
Process_Val REAL 0 Oper Oper High Limit |Span_High
Low Limit Span_Low
Prop_Band REAL 5% Oper Oper High Limit {10,000
Low Limit 0.1
PropUnits BOOL PctSpan(0) | Oper Oper Senses PctSpan (0)
EngUnits (1)

Table 9-23 PIDHeatCool Parameter Attributes
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Name Type Cold Start Read Write Type Specific
Access Access Information
Rel_Ch2_Gain REAL 1 Oper Oper High Limit 10
Low Limit 0.1
Setpoint REAL 0 Oper Oper High Limit Span_High
Low Limit Span_Low
Span_High REAL 100 Config Config High Limit 100,000
Low Limit Span_Low
Span_Low REAL 0 Config Config High Limit Span_High
Low Limit - 100,000
Tune Type ENUM None (0) Config Config Senses None (0)
AT (1)
DRA (2)
LSAT (3)
DRA LS (4)
AT DRA (5)
AT _LSAT (6)
AT D L(7)

Table 9-23 PIDHeatCool Parameter Attributes (Continued)
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APPENDIX A - PID SETTINGS

Tables for refinements of Ziegler and Nichols

This appendix deals with the various proposed refinements available for tuning
PIDs using the open loop reaction curve test and the closed loop ultimate
sensitivity method. Cohen and Coon refinements for PID settings from the reaction
curve method are given in table 1.

Controller Prop_Band Integral Derivative
Type
P 100KpNd/(1 + 0.35Nd)
Pl 100KpNd/(0.9 + (3.3+0.31Nd)Dp/(1+2
0.083Nd) .2Nd
PID 100KpNd/(0.25Nd+1.35) | (2.54+0.46Nd)Dp/(1+0 | 0.37Dp (1+0.19Nd)
.61Nd)
PD 100KpNd/(0.16Nd+1.24) (0.27-

0.088Nd)Dp/(1+0.13Nd)

Table T Cohen and Coon PID settings from a reaction curve

Shinskey [8] and Hang, Astrom and Ho [5] point out that for reasonably secure
manual tuning both the reaction curve method and the ultimate sensitivity method
have to be performed to obtain the best result. Briefly, there appears to be an
empirical relationship between the ratio of the open loop dead-time to time
constant Nd = Dp/Tp and the ratio of proportional band setting during
ultimate sensitivity test to the open loop process gain K = 100Kp/Pu. It is given by

K= I(11N, +13)

(37N4_4)

If K is larger than 1.5 the results of PI and PID control as per Ziegler and Nichols
setting can be poor. Three situations arise

If K < 1.5 retain the PID values;

If 1.5 < K < 2.25, adjust integral term Ti=2KTu/9 with a setpoint weight of
8(4K/9 + 1)/17;

If 2.25 < K, retain PID values and set the setpoint weight to 36/(27+5K).

For PI control if 1.2 < K < 15, PB to 6Pu(14K+15)/5(12+K) and Ti to
Tu(4K+15)/75. Setpoint weighting as that of the PID can be used if needed.

Shinskey [8] has a very similar view. He looks at the ratio of the ultimate period
Tu to the estimated dead-time Tu/Dp. Four situations arise:

Tu/Dp : The process is pure dead-time;
2<Tu/Dp<4: The process is dead-time dominant;
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Tu/Dp=4 : There is single dominant capacity (first order system plus
small dead-time;

Tu/Dp >4 : More than one capacity (lag) present.

Table 2 gives the refinements of Ziegler and Nichols rules for some of these cases.

If the process is open-loop unstable then tuning can only be realistically be
performed manually. Table 3 gives recommendations of Shinskey for an open loop
unstable system with a gain Kp, dead-time Dp and time constant Tp.

Pl Control PID Control
Tu/Dp Ti/Tu PB/Pu Ti/Tu Td/Tu

PB/Pu

2 0.25 2.35 No PID

2.74 0.37 2.17 0.34 0.12
1.66

3.09 0.47 2.10 0.38 0.12
1.51

3.41 0.66 1.85 0.42 0.12
1.43

3.71 0.81 1.71 0.48 0.11
1.30

4.00 1.00 1.65 0.48 0.12
1.70

Table 2  PI/PID settings from open and closed loop tests: Shinskey's refinements

Dp/Tp Ti/Dp Td/Dp PB
-0.10 1.70 0.6 11Kp
-0.20 1.90 0.60 20Kp
-0.50 2.00 0.80 56Kp
-0.67 2.25 0.90 77Kp
-0.80 2.40 1.00 96Kp

Table 3  PID settings for first order UNSTABLE systems with delay
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