Chapter 14
RECIPES

Edition 3

Recipe Overview

(0T o TN 14-iii
DEfiNIHIONS 1evveiiiiiiieieieie e e e e e e 14-iv
Example Application .......ccouevviieeiiiiiiiii e, 14-iv
Recipe MaNAQErs ....cocvueiiiiieiiee e 14-vi
Recipe SIaves......cooiiviieiiiiiiee e 14-vii
Stage MaNAQETS ....iiviiiiiieiiee et e e 14-ix
An Example using the PC3000 Recipe System............... 14 xii
Integrating ESP and PC3000 Recipe Systems ............... 14-xiv
Using El Bisync to communicate to a Recipe Slave........ 14-xvi
Execution, Timing and Synchronisation ....................... 14-xvii
Recipes
RECIPEMAN ...t e e 14-1
Functional Description .........ccccovvieeiiiiieieiiieeeeeeannn, 14-1
Function Block Atftributes ........coooevvieiiiineiiiiiiiniennnen. 14-1
Parameter Descriptions ........cccceevveeieeiineneneieeeennneen, 14-2
Parameter AHributes ........coouvveeiiiiiiiiiiiinniereeinee, 14-4
STAGEMAN ..ot e 14-5
Functional Description ........ccccovvvieeeiiiiieeeiiieeeeennennn. 14-6
Function Block Attributes .......c.ccoovvviiieeeiiieiiiieene, 14-6
Parameter Descriptions .......cccccevvvieiiiiiiniinieieennnn. 14-6
Parameter Attributes ...........cceeeiiiiiiiiiiiieee e, 14-10

PC 3000 Function Blocks Cont. 14



BOOL _16X128 .....oovviiiiiiiiiiiiiiiiiiiiis 14-12

Functional Description ........cccooeviieiiiiiiieiiiiieeeeen, 14-12
Function Block Aftributes.........ccoeeiiiiiiiiiiiniiieniinnne. 14-13
Parameter Descriptions .......c.ccccevvuieiiiiniiinrenineennnn. 14-13
Parameter Aftributes .........cccuceeiiiiiiiiiiiiiiee e 14-15
REAL TOXT28 ..ot e e 14-16
Functional Description ........cccoovviiiiiiiiiiiiiiiieceeenn, 14-16
Function Block Aftributes ...........ccoovviiiiinnnieiiiinnnnnn. 14-17
Parameter Descriptions .........cccevvveiiiiniiiiiieeenneennnn. 14-17
Parameter Attributes .........ccouviiniiiiiiiiiiinnn e, 14-17
DINT TOX128 ..ottt 14-18
Functional Description .......ccccueevvneeiieeeeineeenenne. 14-18
Function Block Aftributes .........c.cocovviiiiinnnieiiiinnnnnn. 14-19
Parameter Descriptions ........ccccvevieiviiiiinieiieeinnennnn. 14-19
Parameter Attributes .........cccuvveeiiiiiiiiiiieee e, 14-19
STR TXT28.. e 14-20
Functional Description ........cccoovvieiiiiiiieiiiiiieeeeenn. 14-20
Function Block Aftributes .........ccooiiiviiiiiinnieniiinnnnnn. 14-20
Parameter Descriptions .......c.ceeevveviiiiiniiiineeinnnennnne. 14-20
Parameter Attributes ..........ccooeiiiiiiiiiiiiii, 14-22

Cont. 14-ii

PC 3000 Function Blocks



Overview

Recipe Overview

These blocks provide a means of implementing recipe systems within the PC3000.
Recipes may created, edited, stored and loaded locally or from a supervisory
system. The library comprises a control function block, the 'recipe manager',
which is responsible for a number of “recipe slaves' which are assigned to it.

The recipe manager provides the recipe selection mechanism and provides the
control interface.

The recipe slaves provide the recipe data storage; they are similar to 2 dimensional
arrays but with fixed dimensions, 16 values wide by 128 values deep. A range of
data types is supported:

Boolean, Real, Integer and String

A mechanism for time sequencing of a pre-defined list of recipes is also provided.
This is called the Stage Manager.

Usage
There are two concepts behind this PC3000 recipe system.

The first is to provide a store of recipes without the need of a supervisory system.
In this case the recipes are stored in the LCM RAM and are used when requested.
The blocks allow for off-line editing of any recipe even when another one is
selected.

The second use is with a supervisory system where the problem is the
communications overhead downloading from one recipe to the next. All the
recipes are downloaded from the supervisory system before the process starts.
During the process the Stage_Manager is used to sequence the requested recipes in
the correct order without the need of further communications.

In both of these cases the recipe data is stored in the LCM RAM and is therefore
lost whenever the LCM is reset; for example after a rebuild and download. Until
recipe data is entered there will be no valid recipes.

To store recipes over a reset, or cold start, the recipe data has to be stored
somewhere. This is not a problem in the PC3000 with the supervisory system,
containing a hard disc, but it could be a problem with the stand alone PC3000. In
this case the File Store System is the only choice.

The Prog8 function blocks have their own in-built recipe system which
incorporates the File Store and this should be used where appropriate.

The only other option is to generate a Macro in the application program which
stores the recipe away regularly during normal operation and, on cold start,
retrieves the data from the File System before resuming its normal functions.

In this case store the data in strings iusing the COMPACT functions
REP_REAL_IN_STR and EXT-REAL-FROM-STR etc)

PC 3000 Function Blocks Cont. 14-iii



Overview

Definitions

Recipe: A recipe is the state defined by all the outputs associated
with a single recipe manager or stage manager.

Manager: Manager on its own is used in this document to describe
either a stage manager or a recipe manager function
block.

Sequence: The sequence is the list of recipes stored in the stage
manager, including loops and end points.

Stage: A stage is a single element of a sequence, consisting of a

recipe number and loop information.

On-line/Live Recipe:  The on-line recipe is the set of values which affect the
process.

Off-line Recipe: The off-line recipe is the set of values used for changing
the contents of the recipe without affecting the process.

Snapshot: Snapshot is the term used to describe loading the live
recipe values back into a recipe.

Example Application

A typical control strategy will be governed by a number of parameters of different
types. As an example system, we will consider an analog control loop coupled
with a digital output. The analog loop contains a ramp function block, the digital
output is triggered by a timer. In a typical application, this set up will be repeated a
number of times (e.g. the zones of an extruder). A single loop is shown in

figure 14-1.

In this example, the parameters which control an individual batch are as follows:

Ramp Setpoint
Ramp Rate

Digital Output state
Batch Time

The function of a recipe system is to set up these parameters, and to synchronise
the start/end of a batch. If a supervisory system were used, before the start of each
batch, these parameters for each loop would have to be downloaded via a
communications link to the PC3000. Once present in the PC3000, the supervisory
system would then signal the start of the batch.

To implement the recipe system shown in figure 14-1 two types of function block
are required. These are Recipe Managers and Recipe Slaves .

Cont. 14-iv PC 3000 Function Blocks



Time

r-r—-——-—--"-"----- - - -"=-=-"-"-"--""=-"-"=-"=-"=-"=-"=-"=-"=-"=-"=-=-= I~
| I—-I
| Analog Input Lo
: e
| Pl
| | |
: PV PID Analog Output : I
| | |
| |
| PV | : : I
I
: OP PV : I
[
| SP L : :
I o
| Ramp | : : :
l o
. | | |
I Setpoint OP R
I — I
| | |
| |
| Rate And Digital Output | : : :
I o
| | |
I Enable !
I Pulse Timer op PV I : : :
| |
I OoP I : : !
| L '
I
| | |
I
| | |
I
I .
I
| | I
I
I Loy
| I
| | |
I
I

Figure 14-1 Recipe System Example

Recipe Slaves

The recipe slave function blocks form the data store of the recipe system.
Recipe slaves are defined by their data type (e.g. Dint, Real), the number
of outputs per block, and the number of recipes which can be stored. For
example, a recipe block of type Real which supports 16 parameters and
can store 128 recipes, is named Real _16 x 128

The recipe slave function blocks also provide the communications
interface into the recipe system, by acting as communications slave
variables.

PC 3000 Function Blocks Cont. 14-v



Overview

Recipe Managers

The recipe manager controls recipe slaves. It governs which recipe they
output. It also controls some recipe editing facilities.

In some applications, it is necessary to have more than one recipe system running
at the same time. For example, combining three fluids in varying amounts may
need temperature setpoints for the three fluids, which rarely change, and valve
settings for the three fluids, which would change in every batch. Rather than
having the temperature setpoints repeated in each recipe, we can split this into two
recipes, one for the temperatures, another for the flow rates.

To facilitate this there is an identifier character, or ID, for each recipe system
present in the PC3000. In each recipe system there will be one recipe manager and
a number of recipe slaves, all of them with the same ID.

Each recipe manager must therefore have a unique Manager ID, in order to
distinguish between the recipes.

In most applications, only one manager will be present. All recipe slaves will then
have the same ID as that manager.

Recipe Managers

The recipe manager performs tasks associated with the global set of recipe slaves
that it controls.

The recipe manager performs tasks associated with the global set of slaves
associated with it. These include 'snapshotting' of the current recipe values (i.e..
loading the live values of the system into a recipe), clearing down individual
recipes or the entire recipe store, changing the recipe currently output, and
inhibiting changes to the recipe. The recipe manager has an ID used to associate
particular recipe slave function blocks with specific managers, and a recipe
number.

The recipe number input sets the recipe on the associated recipe slave function
blocks' outputs. At first execution, the recipe slave function blocks declare
themselves to the recipe managers. When the recipe manager recipe number input
changes, the manager declares this new recipe to all of its associated slaves.

The set of tasks which the recipe manager can perform are as follows:

The manager can initiate a change to the current live recipe. This is done
by either setting the Force input/output, or changing the recipe number.
Setting the Force boolean re-outputs the current recipe.

The manager can initiate a load from the current live recipe back into the
recipe store. In this way, the user can make modifications to the current
recipe, and store them in a recipe on the PC3000. This is known as
'snapshotting’'

Cont. 14-vi PC 3000 Function Blocks



Overview

The manager can declare an individual recipe as being invalid. A recipe is
only deemed valid if there has been a recipe set up in it. An attempt to
change to an invalid recipe will fail. This is done by the recipe manager
requesting from each recipe slave the new recipe. On the recipe slave's next
execution, it checks whether the recipe is valid and signals this to the
manager. On the manager's next execution, if all the associated recipe
slaves have valid data for this recipe, it will signal them all to change to it.
Otherwise, none of the recipe slaves are signalled to change recipe.

The manager can output a recipe to the off-line values. The off-line values
are used for recipe editing from the PC3000. They provide a mechanism of
outputting, viewing, and editing recipes without affecting the live recipe.

The manager can load the off-line values into a recipe.

The manager can inhibit changes to the stored recipes.

Recipe Slaves

The recipe slaves perform the data handling for the recipe system. Internally they
consist of a Communications buffer and a data storage array.

The recipe parameters are output to the user program through recipe slave function
blocks. These each have an internal array of data relating to the individual recipes.
Each is associated with an individual recipe manager, and has a comms address for
configuration and monitoring purposes. Extra facilities are provided to allow a
copy from one recipe to another, and to specify which values change in a
particular recipe. Also they have a set of values related to the “" off-line" recipe,
which can be used to edit the contents of the array without affecting the process.

On-line Recipe Values

The on-line recipe values are the parameters which should be connected to the
system.

Off-line Recipe Values

The off-line values are parameters which can be changed without affecting the
currently running process. This provides a simple facility for editing recipes
through the PC3000 itself.

The Recipe Mask

There are some applications where values are set up at the start of a process run,
but are altered manually throughout that process, either to fine tune the process
prior to 'snapshotting’ the live values, or because manual control is required. In
this situation, it is necessary to output a recipe value once, at the start of the run,
but not to overwrite the value as the recipe subsequently changes.

To provide this functionality, there is a system of recipe masks.
The value for a recipe will ONLY change if the mask bitis SET for that value.

PC 3000 Function Blocks Cont. 14-vii



Overview

For instance, a Real function block has a recipe mask for recipe number 20 of 15
(binary 0000000000001111). This means that when changing to recipe 20, the
values on outputs 5 through 16 will remain unchanged. The values on outputs 1 to
4 will change.

Valid and Invalid Recipes

At cold start, all the recipes in the recipe slave will be invalid -they have no data in
them, and it is not safe to output their values as a recipe. Once a recipe has been
written to, either via comms, from loading the current On-line recipe, or loading
the current Off-line recipe, that recipe in that slave is considered valid. If all of the
slaves associated with a manger have a valid recipe at the same number, then that
recipe as a whole is considered to be valid. To invalidate a given recipe, the Clear
must be asserted, together with the required recipe number, by the associated
manager.

Communications Buffer

Internally the recipe slave contains a 19 parameter multi-element slave variable.
This is interpreted by the block as a load pointer, a destination pointer, a mask and
16 values.

Load Pointer

Writing a recipe number to the load pointer causes the recipe slave to copy that
recipe (i.e. 16 values and a mask) into the recipe pointed at by the destination
pointer for destination pointer values between 1 and 128. Anything greater than
128 or less than O is invalid. O is used as a special number to indicate that this
transaction is a load from the value input/outputs.

Destination Pointer

The destination pointer decides which recipe is the subject of reads and writes.
Recipe 0 is a special denoting the value input/outputs. In order to read the values
of a specific recipe, the recipe number must first be written to the destination
pointer.

Mask

This defines the output change mask for this particular recipe. The least significant
bit relates to value 1, the most significant to value 16. (e.g. a mask value of
1000000000000001 binary will only allow updates of value 16 and value 1 for this

recipe)

Values

After the mask come the 16 values for the current recipe. These can be left as
default values, or overwritten. Defaults are null string for string types, and zero for
real, boolean and integer types.

Cont. 14-viii PC 3000 Function Blocks



Overview

Stage Managers

The stage manager has an internal sequence list which is accessed over comms or
through user program. When in auto mode, a rising edge on the clock input causes
the internal recipe manager to move on to the next recipe from the sequence list.
This list also supports up to four nested levels of looping.

In some systems, there is a requirement to pass through a number of recipes
sequentially. For example, consider the following list of recipes:

Recipe 10
Recipe 23

Recipe 7
Recipe 42 T
Recipe 45
Recipe 47
Recipe 14
Recipe 15 Seven Times | Four Times
Recipe 16
Recipe 43
Recipe 40
Recipe 41

Recipe 73

With the stage manager function block, it is possible to specify a sequence of
recipes in this way.

The function block view of the RecipeMan function block is shown in figure 14-7

PC 3000 Function Blocks Cont. 14-ix



Overview

STAGE MANAGER FUNCTION BLOCK

MANAGER ID

LOADNO
LOAD

CLEARNO

CLEAR
INHIBIT

OFF_OP_NO

OFF_OP

OFF LD

OFF LD NO

STAGE NUMBER —

RECIPE NUMBER —

CLOCK —

MODE —

STAGELOAD
STAGESAVE
EDIT_NO

EDIT_REC
EDIT_LOOPS
END_OF_LOOP
END_OF SEQUENCE

SEQUENCE SLAVE
ADDRESS

RECIPE MANAGER
FUNCTION BLOCK

RECIPE STATUS

RECIPE ERROR

SEQUENC
EDITOR

/1N

RECIPE

SEQUENCE
LIST

E

SLAVE COMMS /

NUMBER
RECIPE SLAVE
BLOCK LIST
’7 ACTUAL RECIPE
FORCE | ACTUAL STAGE
\ | FINISHED
——————] SEQUENCE
| | CONTROLLER LOOPS REMAINING 1

— LOOPS REMAINING 2

— LOOPS REMAINING 3

— LOOPS REMAINING 4

— SEQUENCE STATUS

PARAMETER

SEQUENCE ERROR NUMBER

Figure 14-2 Stage Manager Function Block

Internally the stage manager has two functional parts. There is a recipe manager
function block contained within the stage manager, and there is the sequence
handler. The sequence handler's task is to decide the next recipe to output

Cont. 14-x

PC 3000 Function Blocks



Overview

according to the sequence list. The sequence list is accessible over comms - see

Chapter 3 Appendix C.

Each stage of the list contains the following information:

Stage Number:

Recipe Number:

Loop Count:

End Of Loop:

End Of Sequence:

The stage number is this stage's position in the list of
stages. The sequence handler in the stage manager works
from stage 1 through in ascending numerical order, apart
from when it deals with loops.

The recipe number is the recipe to output for this stage.

If no loop starts on this stage, the loop count is set to 0. If a
loop starts on this stage, then the number of loops is set up
in this field.

If this stage is the end of the current loop, then the end of
loop flag is set.

If this stage is the last in the sequence, then this flag is set.

For example, to implement the sequence shown previously:

Stage Recipe Loops Start of End of
Loop Sequence
1 10 0 Off Off
2 23 0 Off Off
3 7 0 Off Off
4 42 4 Off Off
5 45 0 Off Off
6 47 0 Off Off
7 14 7 Off Off
8 15 0 Off Off
9 16 0 On Off
10 43 0 Off Off
11 40 0 Off Off
12 41 0 On Off
13 73 0 Off On

Table 14-1 Stage Information

It is possible to jump to a stage in the sequence by setting StageNo parameter and
setting mode to Jump(3). If the jump is to the middle of a loop, the end of loops
will be ignored. For instance, if you jump to stage 8 in the above sequence, the

PC 3000 Function Blocks

Cont. 14-xi



Overview

stage manager will step through stage 8 to 13 in sequence, ignoring the end of loop
at stage 9 and stage 12.

An Example using the PC3000 Recipe System

Supervisory
System
Analog Input
Serial
Comms PV
PID Analog Output
Bisync Slave PV
OP PV
SP|
\‘\\ Real 16x128 Ramp
\‘ N a Setpoint
\\\‘ \\\\ | OP
NN 4 Rate
\\‘ \\\\/
A Bool 16x128 And Digital Output
RecipeMcn‘)" v, DOOL_TOX Enable
Recipe \‘\‘ Pulse Timer OP PV
No - P oP
N Time

-

%, Dint_16x128

AN
N\

\\

Figure 14-3 PC3000 Recipe System Example

Cont. 14-xii

PC 3000 Function Blocks



Overview

Using the example system outlined on page 14-iv as an example, we need a single
recipe manager, and recipe slaves of type Dint, Real and Bool. The recipe slaves
all have the same Manager ID, so when the recipe number on the manager
changes, the recipe on all the slave blocks changes.

To facilitate communications to a supervisory system, an instance of a
communications driver is required, for example the EI function block.

We give the RecipeMan function block an ID of '1', and all the recipe slave blocks
a ManagerID of '1".

For the slave block addresses, we use EI Bisync addresses. We give the Real an
address of 'EBdOQ' the Bool an address of 'EBb00' and the Dint an address of
'EBdO0O'

The function block wiring is shown in figure 14-3. In a four loop system, we may
use Val_1 and Val_2 for the first loop's setpoint and ramp rate respectively, Val_3
and Val_4 for the second loop etc.

Without the connection of a supervisory system, we immediately have a certain amount of
functionality in this system. For instance, we could set up the four setpoints, the four ramp
rates, the boolean and the process time manually. Then by setting the Load input on the
RecipeMan function block to 20, and setting the Load input/output to load, the values set
on the outputs will loaded into recipe number 20. If we then alter the values, we can
reassert the previous values by setting RecipeNo to 20. If RecipeNo is already 20, the
block will not be able to detect any change, and so it is necessary to set the Force
Input/Output, which forces the recipe block to re-output the recipe.

Template ".EDIT"

/ Recipe Edit Screen \

Time Setpoint

Loop1 10 65.3
Loop2 20 27.2
Loop3 30 305 Dummy Gates

\Loop4 40 18.7/ .

Parameters altered Off-line

Figure 14-4 Recipe Edit Screen

PC 3000 Function Blocks Cont. 14-xiii



Overview

Integrating ESP and PC3000 Recipe Systems

The PC3000 recipe system can be integrated with the Eurotherm Supervisory
Package (ESP) recipe system, and ESP recipe edit, save and download can be used
to transfer recipes to the PC3000.

The following example takes the previous example and shows how to add an ESP
recipe interface to it.

Introduction

The interface to be outlined here consists of two main screens, a recipe edit screen
and a recipe download screen. The recipe edit screen allows the user to alter recipe
values off-line, and save them as ESP recipe files. The on-line screen shows an
off-line recipe and a PC3000 recipe simultaneously, and allows download from
ESP and on-line editing of the PC3000 recipe.

Gate Parameter Set-up

The gate parameters are set up with addresses as shown in Chapter 3 Appendix B.
The gates which must be present are the recipe number for each block, the recipe
values, and the recipe mask.

If we take an integer recipe block, with address 'EBA90' the gates
required will be as in the table in Chapter 3 Appendix B.

In addition to the recipe slave parameters, the function block parameters of the
recipe manager will be needed. These can be generated by marking the gates in the
PC3000 Programming Station (PS) and saving the gates.

Recipe Edit Screens

The edit screen (see fig edit ) consists solely of dummy gates. We create a dummy
gate to represent each of the recipe parameters. These can then be modified, and
saved as an ESP recipe.

Cont. 14-xiv PC 3000 Function Blocks



Overview

Recipe Download Screen
Downlogd:ON .
ESP Recipe No 5 PC3000 Recipe No 27 | ! i
Time  Setpoint Time Setpoint E E
Loop1 10 65.3 10 65.3 E E
Loop?2 20 27.2 20 27.2 : !
Loop3 30 30.5 30 30.5 E E
Loop4 40 18.7 40 18.7 ! :

5 ./

:' PC3000 Actual Values ‘
Dummy Gates "Invisible" Gates

Fig 14-5 Recipe Download Screen

Recipe Download Screens

The recipe download screen (see fig download ) uses the same recipe files as the
recipe edit screen.

It consists of three parts. There are the dummy gates which appear in the edit
template - these are used to load the ESP recipe. This is done by detecting a
change in the ESP recipe number gate, and loading the new recipe using Wizcon
language - this allows a recipe file of a different name to be loaded. The PC3000
recipe gates give a view onto the recipe as stored in the PC3000.

There are a set of 'invisible' gates (foreground colour set to background colour).
These are the destination pointer and recipe mask for the individual recipe slaves.
The destination pointers are updated using Wizcon language to be the same as the
visible recipe number gate. The recipe mask should be set to binary
1111111111111111 (i.e. always update all 16 values).

The recipe download mechanism is implemented in Wizcon language. It detects
the "~ Download" gate changing, then copies the contents of the dummy gates to the
PC3000 recipe gates.

PC 3000 Function Blocks Cont. 14-xv



Overview

Using El Bisync to communicate to a Recipe Slave

This example shows communications to a recipe slave integer function block.

Assuming a Dint function block has the address 'EBA90'.
Assuming the EI function block hasa Gid of '0'.

The block is configured over the comms. either using a single composite

parameter or using 19 basic parameters. These are :

Address
00 A%0 Composite
parameter
00 A91 Destination
00 A92 Load From
00 A93 Mask
00 A94 Value 1
00 A95 Value 2
00 A96 Value 3
00 A97 Value 4
00 A98 Value 5
00 A99 Value 6
00 A9: Value 7
00 A9; Value 8
00 A9 < Value 9
00 A9 Value 10
00 A9 > Value 11
00 A9? Value 12
00 A%@ Value 13
00 A9A Value 14
00 A9B Value 15
00 A9C Value 16

Table 14-2 Basic Parameters

The fields within the composite parameter are in the same order as the individual

parameters in the above table.

Cont. 14-xvi

PC 3000 Function Blocks



Overview

Execution, Timing and Synchronisation

Execution

When a command is issued to the recipe manager, a number of actions take place.
Firstly, the command (e.g. a request to change to a new recipe) is broadcast to all
of the manager's associated slaves. When each slave executes, it decides whether
the command is valid (e.g. it will check to see if the new recipe is valid). On the
manager's next execution, it checks the replies from all of its associated slaves. If
any of the slaves can not perform the action, it will abort the attempt.

If all the slaves can perform the action, the manager broadcasts a command to
perform the action to each of its associated slaves. Then as each slave next
executes, it updates its outputs as necessary.

Timing
Latency from a change of recipe number to a change on the recipe slave outputs
will be a maximum of three ticks. This worst case comes when the slave executes

immediately before the manager, and the change to the recipe number comes
immediately after the manager executes, as shown below.

System Tick

Recipe Number Changes—

New Recipe broadcast to Slaves —

Slave acknowledges Recipe —

Recipe change initiated -

New Recipe values output —

<@—— Maximum Latency 3 x Tick Rate ———

Recipe Manager Execution

Recipe Slave Execution

Fig 14-6 Recipe Manager and Slave Timing

PC 3000 Function Blocks Cont. 14-xvii



Overview

Synchronisation

There is no guarantee of the execution order of function blocks executing on the
same task - the programming station decides the order of execution dependent
upon the wiring between the blocks. Because of this, the change of values in a
recipe will no necessarily fall on the same tick. However, information is available
in the form of the Changed flag on the recipe slaves. This is set by the block, and
only reset by the userware.

Communications Timings

When the recipe salves are being accessed by EI Bisync as single element
parameters, the multiple writes which occur to the same parameter can cause
comms errors. This happens because the slave must process each transaction
individually, and it is write protected until it has processed the last transaction.

There are two ways to overcome this - either move the recipe slaves to a faster
task, or increase the amount of time between each transaction to a particular slave.
This can be done by interleaving writes to a number of different recipe slaves.

Cont. 14-xviii PC 3000 Function Blocks



RecipeMan

RECIPEMAN FUNCTION BLOCK

RecipeMan

STRING —I: ID Status BOOL
DINT —|: Recipe No Error No DINT
BOOL ‘--| Force _________________ Force BOOL
DINT —|: Load No Act_Recipe DINT
BOOL --I load - - BOOL
DINT —|: Clear No
BOOL --I Clear ________________. Clear BOOL
BOOL —I: Inhibit
DINT —I: Off_Op_No
BOOL --| Off Op -——-— = Off_Op BOOL
DINT —I: Off Id No
BOOL --| off Id - _________ Off_Id BOOL

Figure 14-7 RecipeMan Function Block Diagram

Functional Description

The Recipe Manager function block is used to co-ordinate a number of Recipe
Slave function blocks. Facilities are provided for selecting recipes, editing recipes,

clearing recipes, etc.

Function Block Atributes

TYPe: e 3E00

Class: .ccccoveeeiiieeeeeeieceeeeenn, RECIPE

Default Task: ...................... Task 2

Short List: ceeeeveeneeeeieiieiennnes ID, Recipe No, Status

Memory Requirements: ...... 66 Bytes

PC 3000 Function Blocks

14-1



RecipeMan

Parameter Descriptions

ID (ID)

Is a one character string which associates the Recipe Manager function block with
a number of Recipe Slaves. All the Recipe Slave function blocks with the same ID
will be controlled by this Recipe Manager.

Recipe No(RN)

Used to set the required recipe number. A new recipe will be selected whenever
Recipe_No changes. To re-select the same recipe no Force should be used.

Force (F)

Used to force the current recipe to be re-selected. It could be used following a
recipe edit to force the latest values to be used.

Load No (LN)

Defines the recipe slot that the current outputs will be loaded into when Load is set
to Load.

Load (L)

When set to Load the current recipe outputs will be loaded into the recipe slot
defined by Load_No.

Clear No (CN)

Defines the recipe slot that will be cleared (deleted) when Clear is set to Clear.

Clear (C)

When set to Clear the contents of the recipe slot defined by Clear_No will be
cleared (deleted).

Inhibit (1)
When set to Inhibit the recipe system will be write protected and no further data
will be written to the recipe slots.

Off Op_No (OON)

Defines the recipe slot whose contents will be transferred to the off-line editing
pins when Off_Op is set to Output.

Off Op (00)

When set to Output the contents of the recipe slot defined by Off Op_No will be
transferred to the off-line editing pins.

14-2 PC 3000 Function Blocks



RecipeMan

Off Ld No (OLN)
Defines the recipe slot that the values of the off-line editing pins will be written to
when Off 1.d is set to Load.

Off Ld (OL)
When set to Load the values on the off-line editing pins will be written to the
recipe slot defined by Off_Ld_No.

Status (S)

Set to Go if the recipe system is operating normally. If set to NOGO Error_No will
indicate the cause of the error.

Error_No (EN)
Defines the error condition if Status is NOGO

100 = Undefined Recipe
101 = Load_No out of range
102 = Clear_No out of range

Act Recipe (AR)
The recipe number which is currently being used. This may be different to
Recipe_No if an invalid recipe number has been requested.

PC 3000 Function Blocks 14-3



RecipeMan

Parameter Atiributes

Name Type Cold Read Write Type Specific Information
Start |Access | Access
ID STRING Oper |Oper
Recipe No DINT 1 Oper |Super High Limit 128
Low Limit 1
Force BOOL Idle (O) Oper |Oper Senses Force (1)
Idle (O)
Load_No DINT 1 Oper |Oper High Limit 128
Low Limit 1
Load BOOL Idle (0) Oper |Oper Senses Load (1)
Idle (O)
Clear_No DINT 1 Oper |Super High Limit 128
Low Limit 1
Clear BOOL Idle (0) Oper |Oper Senses Clear (1)
Idle (0)
Inhibit BOOL Enable (0) |Oper |Oper Senses Inhibit (1)
Enable (0)
Off Op No |DINT 1 Oper |Super High Limit 128
Low Limit 1
Off Op BOOL Idle (O) Oper |Oper Senses Output 1)
Idle (0)
Off Ld No DINT 1 Oper  |Super High Limit 128
Low Limit 1
Off Ld BOOL Idle (O) Oper |Oper Senses Load (1)
Idle (O)
Status BOOL NOGO (0)|Oper |Block Senses NOGO (0)
Go (1)
Error_ No DINT 0 Oper |Block High Limit 255
Low Limit 0
Act_Recipe DINT 0 Oper |Block High Limit 128
Low Limit 0

Table 14-3 RecipeMan Parameter Attributes

14-4

PC 3000 Function Blocks




StageMan

STRING —4

STRING —4

BOOL -{

DINT _4

DINT __4

ENUM -i

DINT __{

Boor, =

DINT ]

BOOL -1

BOOL —|

DINT —|

BOOL -
DINT —]
Boor, =
Boor -
Boor -
DINT —]
DINT .|
DINT _1
BOOL -1
BOOL -1

STAGEMAN FUNCTION BLOCK

1D

Address

RecipeNo
StageNo

Mode

StageLoad
StageSave
Edit_No

Edit_ Rec

Edit_Loops

EndOfLoop

EndOfSeg

N

RecStat

RecErrNo

SegStat

SegErrNo

SegStage

LoopsReml

________ StageLoad
________ StageSave
LoopsRem3
Edit_Rec

______ Edit_Loops

________ EndOfLoop

__________ EndOfSeqg

LoopsRem4

Finished

Figure 14-8 StageMan Function Block

' BOOL

DINT

" BOOL

BOOL

DINT

ENUM

DINT

BOOL

DINT

BOOL

DINT

DINT

BOOL

DINT

BOOL

BOOL

BOOL

DINT

DINT

' DINT

BOOL

' BOOL

" DINT

+ BOOL

PC 3000 Function Blocks

14-5



StageMan

Functional Description

The Stage Manager function block is an extension to the Recipe Manager function
blocks which is designed to support the sequencing and looping of recipes.

The recipe sequence is pre-loaded into the Stage Manager function block either via
the communications interface or by the user program.

Function Block Attributes

TYPE: e 3E08
Class:..ccoeeerereereeerecieeee e RECIPE

Default Task: .....ccceeveeeeueeee.. Task_2

Short List: ...cceevevvevvneennnnne ID, SeqStage, Act Recipe

Memory Requirements: ...... 3408 Bytes

Parameter Descriptions

ID (ID)

Is a single character string used to associate recipe slave function blocks with the
Stage Manager E.g. A Stage Manager with ID ='A'" will control all recipe slave
function blocks which also have an ID ="A".

Address (A)

Address defines the communications address for accessing the internal data arrays
for the storage of sequence information. E.g. If set to 'EBx00', the address of the
multi-element parameter will be x00, the first individual parameter x01 etc.

Clock (C)

If Mode = Auto setting Clock to Tick will cause the next recipe in the sequence to
be output. When the new recipe has been output, Clock will revert to Tock.

RecipeNo (RN

If Mode = Manual, this input specifies the recipe number which will be selected. A
new recipe will be selected each time RecipeNo changes. The Stage Manager will
indicate an error if an invalid recipe number is selected.

Stage No(SN)

When Mode is set to Jump, the Stage Manager will jump to the sequence stage
defined by StageNo.

14-6 PC 3000 Function Blocks



StageMan

Mode (M)

The normal operating mode is Auto. In this case recipes will be controlled by the
sequence and the Clock input.

If Mode is set to Manual the Stage Manager will operate a Recipe Manager.
RecipeNo is used to select a specific recipe.

If Mode is set to Reset the sequence will be reset to the first stage of the sequence.

If Mode is set to Jump, the sequence will jump to the sequence stage specified by
StageNo.

LoadNo (LN)

Defines the destination for loading the current recipe when Load is set to Load.

ClearNo (CN)

Defines the recipe slot which will be cleared (deleted) when Clear is set to Clear.

Clear(C)

When set to Clear the contents of the recipe slot defined by ClearNo will be
cleared (deleted).

Inhibit (1)
When set to inhibit the recipe system will be write protected and no changes to the
stored recipe data will be allowed.

Off Op_No (OON)

Defines the recipe slot whose contents will be transferred to the off-line editing
pins when Off_Op is set to Output.

Off Op (0O)

When set to Output the contents of the recipe slot defined by Off _Op_No will be
transferred to the off-line editing pins.

Off_Ld No (OLN)

Defines the recipe slot that the values of the off-line editing pins will be written to
when Off 1.d is set to Load.

Off Ld (OL)

When set to Load the values on the off-line editing pins will be written to the
recipe slot defined by Off_L.d_No.

PC 3000 Function Blocks 14-7



StageMan

RecStat (RS)

When set to Go the recipe system is operating normally. If set to NOGO an error
occurred during the last recipe transaction. E.g. output, load clear, etc. RecErrNo
will indicate the cause of the error.

RecErrNo (REN)
Defines the error condition if RecStat is NOGO
100 = Undefined Recipe
101 = Load_No out of range
102 = Clear_No out of range

SeqStat (SS)

When set to Go the last communications transaction with the Stage Manager was
successful. If set to NOGO an error occurred during the last communications
transaction. SeqErrNo will indicate the cause of the error.

SeqErrNo (SEN)

Defines the error condition if SeqStat is NOGO. Refer to the appropriate
communications slave driver in chapter 3 for error number explanation.

ActRecipe (AR)

This is the recipe number which is currently being output by the recipe slave
function block.

SeqRecipe (SR)

This is the recipe number that is being requested by the Stage Manager sequence.
It may differ from ActRecipe if an invalid recipe selected.

SeqgStage (SS)

This output indicates the current stage in the Stage Manager recipe sequence.

LoopsRem1 (LR)

This output indicates the number of loops remaining for loop 1.

LoopsRem2 (LR)

This output indicates the number of loops remaining for loop 2.

LoopsRem3 (LR)

This output indicates the number of loops remaining for loop 3.

14-8 PC 3000 Function Blocks



StageMan

LoopsRem4 (LR)

This output indicates the number of loops remaining for loop 4.

Finished (F)

Will be set to Done when the end of the recipe sequence has been reached.

Stageload (SL)

When set to Load the contents of the sequence stage defined by Edit_No will be
written to the editing pins Edit_Rec, Edit_Loops, EndOfLoop and EndOfSeq.

StageSave (SS)

When set to Save the values of the editing pins Edit_Rec, Edit_IL.oops, EndOfLoop
and EndOfSeq will be written to the sequence stage defined by Edit_No.

Edit No (EN)
Specifies the Stage Manager stage no that will be read from or written to when
Stagel.oad and StageSave are set.

Edit Rec (ER)

The recipe number which will be selected for this stage.

Edit Loops (EL)

Defines the number of loops for this stage. The number of loops is defined for the
first stage of a loop. Up to four nested loops are supported.

EndOflLoop (EOL)
Set to End if this stage is the last stage of a loop.

EndOfSeq (EOS)

Set to End if this stage is the last stage in the sequence.

PC 3000 Function Blocks 14-9



StageMan

Parameter Attributes

Name Type Cold Read Write Type Specific Information
Start |Access | Access
ID STRING Null Oper |Oper Single character
Address STRING Null Oper |Oper
Clock BOOL Tock (0) |Oper |Oper Senses Tick (1)
Tock (0)
Recipe_No DINT 1 Oper |Super High Limit 128
Low Limit 1
StageNo DINT 1 Oper |Super High Limit 512
Low Limit 1
Mode ENUM Auto (0) |Oper |Oper Senses Auto (0)
Manual (1)
Reset (2)
Jump (3)
Load No DINT 1 Oper |Super High Limit 128
Low Limit 1
Load BOOL Idle (O) Oper |Oper Senses Load (1)
Idle (0)
ClearNo DINT 1 Oper |Super High Limit 128
Low Limit 1
Clear BOOL Idle (0) Oper |Oper Senses Clear(1)
Idle (0)
Inhibit BOOL Enable (0) |Oper | Oper Senses Inhibit (1)
Enable (0)
Off Op_No |DINT 0 Oper  |Super High Limit 128
Low Limit 0
Off Op BOOL Idle (O) Oper |Oper Senses Output (1)
Idle (0)
Off Ld No DINT 1 Oper  |Super High Limit 128
Low Limit 1
Off Ld BOOL Idle (O) Oper |Oper Senses Load (1)
Idle (0)
Stageload BOOL Idle (0) Oper |Oper Senses Load (1)
Idle (0)
Table 14-4 StageMan Parameter Attributes (Continued)
14-10 PC 3000 Function Blocks




StageMan

Name Type Cold Read Write Type Specific Information
Start Access | Access
StgeSave BOOL Idle (0) Oper |Oper Senses Save (1)
Idle (O)
Edit No DINT 1 Oper |Super High Limit 512
Low Limit 1
Edit Rec DINT 1 Oper |Super High Limit 128
Low Limit 1
Edit Loops DINT 0 Oper |Super High Limit 65535
Low Limit 0
EndOflLoop BOOL |Off (0) Oper |Oper Senses End (1)
Off (0)
EndOfSeq BOOL Off (0) Oper |Oper Senses End (1)
Off (0)
RecStat BOOL NOGO (0) |Oper |Block Senses GO (1)
NOGO ( 0)
RecErrNo DINT 0 Oper |Block High Limit 255
Low Limit 0
SeqStat BOOL NOGO (0) |Oper |Block Senses GO (1)
NOGO ( 0)
SeqErrNo DINT 0 Oper |Block High Limit 255
Low Limit 0
ActRecipe DINT 0 Oper |Block High Limit 128
Low Limit 0
SeqRecipe DINT 0 Oper Block High Limit 128
Low Limit 0
SeqStage DINT 0 Oper  |Block High Limit 512
Low Limit 0
LoopsRem1-4 |DINT 0 Oper  |Block High Limit 255
Low Limit 0
Finished BOOL Running (0) |Oper |Block Senses Done (1)
Running (0)

Table 14-4 StageMan Parameter Atftributes

PC 3000 Function Blocks

14-11



Bool 16x128

BOOL_16X128FUNCTION BLOCK

Bool_ 16x128

ManagerID Status BOOL

STRING

STRING Address Cormms_ Exrr DINT

BOOL BOOL

BOOL BOOL

BOOL BOOL

BOOL BOOL

BOOL BOOL

BOOL

Q00000000000

BOOL Off Mask -----—----. Off_Mask

Recipe Err DINT

N\

Figure 14-9 Bool 16x128 Function Block Diagram

Functional Description

The Bool _16x128 is used for boolean recipe data. Each block can support up to
16 recipe variables and up to 128 recipes. A Recipe Manager or a Stage Manager
function block must also be created to control the recipe system.

14-12 PC 3000 Function Blocks



Bool 16x128

Function Block Atiributes

Type: o, 3E90

Class: .coeeevreeerieinneereeeeneeeens RECIPE

Default Task: .....ccevuuereennnnees Task_2

Short List: ....cccccverreveeernnnen. Manager ID, Status

Memory Requirements: ...... 3088 Bytes

Parameter Descriptions

ManagerID (ID)

ID is a single character which is used to associate the Recipe Slave function block
with a Recipe Manager or Stage Manager. E.g. A Recipe Slave with an
ManagerID = ~ A’ will be associated with the Recipe or Stage Manager which also

hasanID="A’

Address (A)

Address defines the communications address for accessing the internal data arrays
for direct read and write of recipe data.

Status (S)

Set to Go if the recipe system is operating normally. If an error has occurred either
due to a recipe transaction or a communications transaction Status will be set to
NOGQO and the cause of the error will be indicated by Comms_Err or Recipe_Err.

Comms_Err (CE)

Gives the error number for a communications error when Status is NOGO. Refer
to the appropriate communications slave driver in chapter 3 for error number
explanation.

Recipe Err (RE)
Gives the error number for a recipe error when Status is NOGO.
1 = Recipe out of range
2 = Recipe undefined
3 = Default recipe undefined
4 = Load recipe out of range

5 = Clear recipe out of range

PC 3000 Function Blocks 14-13



Bool 16x128

Val _1(V1) to Val 16(V16)

This is the actual recipe value for parameters 1 to 16. It can be written to change
the value of the output, but this change will be permanent unless the recipe is
reloaded using the Load pin on the Recipe or Stage manager.

Val_Mask (VM)

The mask is used to specify which values to change when the recipe is output.
Each parameter is represented by a bit in the mask. E.g. a recipe slot with mask 15
(binary 0000000000001111) will only affect values 1 to 4.

Changed (C)
Set to Changed when a new recipe has been output. This parameter must be reset
by the program.

Off 1(O1) to Off _16(O16)

The off-line editing pins are used for editing a recipe. Writing and reading
parameters to and from the off-line pins is controlled by the Off-Op and Off_Ld
pins on the Recipe or Stage Manager.

OffMask(OM)

This is the mask value for the off-line recipe.

14-14 PC 3000 Function Blocks



Bool 16x128

Parameter Atiributes

Name Type Cold Read Write Type Specific Information
Start Access | Access
ManagerlD STRING Null Oper Oper
Address STRING Null Super Super
Val 1 to BOOL Off (0) Oper Oper Senses On (1)
Val_16 Off (0)
Val_Mask DINT 0 Oper Super High Limit 65536
Low Limit 0
Changed BOOL Off (0) Oper Oper Senses Changed (1)
Off (0)
Off 1+to BOOL Off (0) Oper Oper Senses On (1)
Off 16 Off (0)
OffMask DINT 0 Oper Super High Limit 65536
Low Limit 0
Status BOOL NOGO |Oper Block Senses NOGO (1)
(0) Go (0)
Comms_Err  |DINT 0 Oper Block High Limit 255
Low Limit 0
Recipe Err DINT 0 Oper Block High Limit 255
Low Limit 0

Table 14-5 Bool 16x128 Parameter Attributes

PC 3000 Function Blocks 14-15



Real 16x128

REAL_16X128 FUNCTION BLOCK

Real_ 16x128

ManagerID Status BOOL

STRING

STRING Address Comms_Err DINT

BOOL BOOL

BOOL BOOL

DINT DINT

Q00000000000

BOOL Changed -——-———_____. Changed BOOL
BOOL Off 1 - . Off_1 BOOL
BOOL Off 16 oo Off_16 BOOL
BOOL Off Mask -----—----. Off_Mask Boor

DINT

Recipe Err

N\

Figure 14-10 Real 16x128 Function Block Diagram

Functional Description

The Real_16x128 is used for real recipe data. Each block can support up to 16
recipe variables and up to 128 recipes. A Recipe Manager or a Stage Manager
function block must also be created to control the recipe system.

14-16 PC 3000 Function Blocks



Real 16x128

Function Block Atiributes

TYPE:ceiieeieeeeeeer e 3EAQ

Class: .coeeevreeerieinneereeeeneeeens RECIPE

Default Task: .....ccevuuereennnnees Task_2

Short List: ....cccccverreveeernnnen. Manager ID, Status

Memory Requirements: ...... 9376 Bytes

Parameter Descriptions

See Bool_16x128 parameter descriptions

Parameter Attributes

Name Type Cold Read Write Type Specific Information
Start |Access | Access
ManagerlD STRING | Null Oper |Oper
Address STRING | Null Super |Config
Val_1 to REAL Oper |Oper High Limit 1000000
Val_16 Low Limit -1000000
Val_Mask DINT 0 Oper  |Super High Limit 65536
Low Limit 0
Changed BOOL Off (0) Oper |Oper Senses Changed (1)
Off (0)
Off 1+to REAL Oper |Oper High Limit 1000000
Off 16 Low Limit -1000000
OffMask DINT 0 Oper |Super High Limit 65536
Low Limit 0
Status BOOL NOGO |Oper |Block Senses NOGO (0)
(0) Go (1)
Comms_Err  |DINT 0 Oper  |Block High Limit 255
Low Limit 0
Recipe_ Err DINT 0 Oper  |Block High Limit 255
Low Limit 0

Table 14-6 Real 16x128 Parameter Attributes

PC 3000 Function Blocks

14-17



Dint_16x128

DINT_16X128 FUNCTION BLOCK

Dint 16x128
STRING Manager ID Status BOOL

STRING Address Cormms_ Exrr DINT

DINT DINT

DINT DINT

BOOL BOOL

DINT DINT

DINT DINT

DINT

slalalilslalalalalalalala

DINT Off Mask _—_________ Off_Mask

Recipe Err DINT

N\

Figure 14-11 Dint _16x128 Function Block Diagram

Functional Description

The Dint_16x128 is used for integer recipe data. Each block can support up to 16
recipe variables and up to 128 recipes. A Recipe Manager or a Stage Manager
function block must also be created to control the recipe system.

14-18 PC 3000 Function Blocks



Dint_16x128

Function Block Atiributes

TYPE:ceiieeieeeeeeer e 3EBO

Class: .coeeevreeerieinneereeeeneeeens RECIPE

Default Task: .....ccevuuereennnnees Task_2

Short List: ....cccccverreveeernnnen. Manager ID, Status

Memory Requirements: ...... 9424 Bytes

Parameter Descriptions

See Bool_16x128 parameter descriptions

Parameter Attributes

Name Type Cold Read Write Type Specific Information
Start |Access | Access
ManagerlD STRING | Null Oper |Oper
Address STRING | Null Super |Config
Val_1 to DINT 0 Oper |Oper High Limit 1000000
Val_16 Low Limit -1000000
Val_Mask DINT 0 Oper  |Super High Limit 65536
Low Limit 0
Changed BOOL Off (0) Oper |Oper Senses Changed (1)
Off (0)
Off 1+to DINT 0 Oper |Oper High Limit 1000000
Off 16 Low Limit -1000000
OffMask DINT 0 Oper |Super High Limit 65536
Low Limit 0
Status BOOL NOGO |Oper |Block Senses NOGO (0)
(0) Go (1)
Comms_Err  |DINT 0 Oper  |Block High Limit 255
Low Limit 0
Recipe_ Err DINT 0 Oper  |Block High Limit 255
Low Limit 0

Table 14-7 Dint _16x128 Parameter Attributes

PC 3000 Function Blocks

14-19



Str1x128

STR_1X128 FUNCTION BLOCK

Str 1x128
STRING —I: ManagerID Status BOOL
STRING —I: Address Cormms_ Err DINT
stRe | val - Val STR
DINT 1 val Mask --———————- Val_Mask DINT
BOOL _|: Changed ———-———____. Changed BOOL
stk — | offval - Off_val STR
STR _|: Off Mask - - ______ Off Mask STR
Recipe Err DINT

Figure 14-12 Str_1x128 Function Block Diagram

Functional Description

The Str_1x128 is used for String recipe data. Each block supports one recipe
variable and up to 128 recipes. A Recipe Manager or a Stage Manager function
block must also be created to control the recipe system.

Function Block Attributes

TYPE: et 3ECO
Class:...eeeeeeeereeeerrneeeeeeene RECIPE

Default Task: ...................... Task_2

Short List: ccoeveevveneiiieneeneen. Manager ID, Status, Value

Memory Requirements: ...... 4704 Bytes

Parameter Descriptions

ManagerlID (ID)

ID is a single character which is used to associate the Recipe Slave function block
with a Recipe Manager or Stage Manager. E.g. a Recipe Slave with an ManagerID

14-20 PC 3000 Function Blocks



Str_1x128

="A’ will be associated with the Recipe or Stage Manager which also has an
D="A’.

Address (A)

Address defines the communications address for accessing the internal data arrays
for direct read and write of recipe data.

Status (S)

Set to Go if the recipe system is operating normally. If an error has occurred either
due to a recipe transaction or a communications transaction Status will be set to
NOGQO and the cause of the error will be indicated by Comms_Err or Recipe_Err.

Comms_Err (CE)

Gives the error number for a communications error when Status is NOGO. Refer
to the appropriate communications slave driver in chapter 3 for error number
explanation.

Recipe Err (RE)
Gives the error number for a recipe error when Status is NOGO.
1 = Recipe out of range
2 = Recipe undefined
3 = Default recipe undefined
4 = Load recipe out of range

5 = Clear recipe out of range

Val(V)
This is the actual recipe value. It can be written to change the value of the output,

but this change will be permanent unless the recipe is reloaded using the L.oad pin
on the Recipe or Stage manager.

ValueMask (VM)

The mask is used to specify whether the output should change when the recipe is
output.

Changed (C)
Set to Changed when a new recipe has been output. This parameter must be reset
by the program.

PC 3000 Function Blocks 14-21



Str1x128

Off Val (OV)

The off-line editing pin is used for editing a recipe. Writing and reading
parameters to and from the off-line pin is controlled by the Off-Op and Off_Ld
pins on the Recipe or Stage Manager.

Off Mask(OM)

This is the mask value for the off-line recipe.

Parameter Atiributes

Name Type Cold Read Write Type Specific Information
Start  |Access | Access
ManagerlD STRING |Null Oper |Oper
Address STRING Null Super |Oper
Val STRING Null Oper |Oper
Mask BOOL Off (0) Oper |Oper Senses On (1)
Off (0)
Changed BOOL Off (0) Oper |Oper Senses Changed (1)
Off (0)
Off Val STRING |Null Oper |Oper
Off Mask BOOL Off (0) Oper |Oper Senses On (1)
Off (0)
Status BOOL NOGO |Oper |Block Senses NOGO (0)
(0) Go (1)
Comms_Err  |DINT 0 Oper |Block High Limit 255
Low Limit 0
Recipe Err DINT 0 Oper |Block High Limit 255
Low Limit 0

Table 14-8 Str_1x128 Parameter Attributes

14-22 PC 3000 Function Blocks





