PONG - Add two extra balls

The plan is to allow extra balls to appear when a ball goes out of play on an adjacent computer
screen, using the general purpose 1/0 (GPIO) on the raspberry Pi to communicate. The following
instructions allow the extra balls to be added to the game, and also used within the game, before
the I/0 communication has been implemented.

Because the existing ball is a class it is very easy to create two extra balls by making the following
changes (note the ball is initialised with an extra parameter which is the ball number):

Create two bats, three balls and add them to a sprite group
self.playerlBat = Bat(self.displaySize, "playerl")
self.player2Bat = Bat(self.displaySize, "player2")

self.ball = Ball(self.displaySize, 0)

self.ball2 = Ball(self.displaySize, 1)

self.ball3 = Ball(self.displaySize, 2)

self.sprites = sprite.Group(self.player1Bat, self.player2Bat,
self.ball, self.ball2, self.ball3)

And now we need to replicate the code that is used to test for the original ball collisions so that
collisions are detected for the two new balls:

Check for bat collisions
self.ball.batCollisionTest(self.player1Bat)
self.ball.batCollisionTest(self.player2Bat)

Check for bat collisions (ball2)
self.ball2.batCollisionTest(self.player1Bat)
self.ball2.batCollisionTest(self.player2Bat)

Check for bat collisions (ball3)
self.ball3.batCollisionTest(self.player1Bat)

self.ball3.batCollisionTest(self.player2Bat)

P.T.O..

The behaviour of the extra balls is different from the original because they are sometimes visible and
sometimes not visible. They should appear on request (either a key press or an input from another

Pi) but then disappear when they go out of play. They also need to be a different colour. Firstly
change the __Init__ function for the ball:

, ballnumbe

Still within the __Init__ function make the following changes to store the ball number and also
change the colour of the ball:

self.ballnumber = ballnumbe

to colour the ball

if ballnumber == 2:

self.image.fill((0, O, 255)) # blue

elif ballnumber == 1:

self.image.fill((255, 0, 0)) # red

self.image.fill((255, 255, 255)) # white

P.T.O..

Now change the ball’s reset function so that the extra balls start off hidden:

if (self.ballnumber == 0): # the main ball, always showing
self.showing = 1

Stop the ball moving
Vector(x, y)

self.vector = (0, 0)

P.T.O..

Immediately after this add a new show function for the ball (needed for the extra balls). Note that
one of the extra balls always comes from the left and the other always comes from the right:

def show(self):
if (self.showing == 0):

self.showing = 1

Now insert this one line at the start of the ball Update function. Any ball that is not visible does not
need to be updated:

All that is required now is to show the extra balls when a key is pressed. “B” for ball 2 and “N” for
ball 3. Add this code to the HandleEvents function in the main game class:

if event.key == K_b: # make ball 2 appea
self.ball2.show()

if event.key == K_n: # make ball 3 appea
self.ball3.show()

