
PONG – Add two extra balls

The plan is to allow extra balls to appear when a ball goes out of play on an adjacent computer

screen, using the general purpose I/O (GPIO) on the raspberry Pi to communicate. The following

instructions allow the extra balls to be added to the game, and also used within the game, before

the I/O communication has been implemented.

Because the existing ball is a class it is very easy to create two extra balls by making the following

changes (note the ball is initialised with an extra parameter which is the ball number):

 # Create two bats, three balls and add them to a sprite group

 self.player1Bat = Bat(self.displaySize, "player1")

 self.player2Bat = Bat(self.displaySize, "player2")

 self.ball = Ball(self.displaySize, 0)

 self.ball2 = Ball(self.displaySize, 1)

 self.ball3 = Ball(self.displaySize, 2)

 self.sprites = sprite.Group(self.player1Bat, self.player2Bat,

 self.ball, self.ball2, self.ball3)

And now we need to replicate the code that is used to test for the original ball collisions so that

collisions are detected for the two new balls:

 # Check for bat collisions

 self.ball.batCollisionTest(self.player1Bat)

 self.ball.batCollisionTest(self.player2Bat)

 # Check for bat collisions (ball2)

 self.ball2.batCollisionTest(self.player1Bat)

 self.ball2.batCollisionTest(self.player2Bat)

 # Check for bat collisions (ball3)

 self.ball3.batCollisionTest(self.player1Bat)

 self.ball3.batCollisionTest(self.player2Bat)

P.T.O…

The behaviour of the extra balls is different from the original because they are sometimes visible and

sometimes not visible. They should appear on request (either a key press or an input from another

Pi) but then disappear when they go out of play. They also need to be a different colour. Firstly

change the __Init__ function for the ball:

The class for the ball

class Ball(sprite.Sprite):

 def __init__(self, displaySize, ballnumber):

Still within the __Init__ function make the following changes to store the ball number and also

change the colour of the ball:

 self.ballnumber = ballnumber

 # Fill the image to colour the ball

 if ballnumber == 2:

 self.image.fill((0, 0, 255)) # blue

 elif ballnumber == 1:

 self.image.fill((255, 0, 0)) # red

 else:

 self.image.fill((255, 255, 255)) # white

P.T.O…

Now change the ball’s reset function so that the extra balls start off hidden:

 def reset(self):

 if (self.ballnumber == 0): # the main ball, always showing

 self.showing = 1

 # Start the ball directly in the centre of the screen

 self.rect.centerx = self.displaySize[0] / 2

 self.rect.centery = self.displaySize[1] / 2

 # Start the ball moving to the left or right (pick randomly)

 # Vector(x, y)

 if random.randrange(1, 3) == 1:

 # move to left

 self.vector = (-1, 0)

 else:

 # move to right

 self.vector = (1, 0)

 else: # other balls start off hidden

 self.showing = 0

 # Put the ball off the screen

 self.rect.centerx = -100

 self.rect.centery = -100

 # Stop the ball moving

 # Vector(x, y)

 self.vector = (0, 0)

P.T.O…

Immediately after this add a new show function for the ball (needed for the extra balls). Note that

one of the extra balls always comes from the left and the other always comes from the right:

 def show(self):

 if (self.showing == 0):

 # Start the ball directly in the centre of the screen

 self.rect.centerx = self.displaySize[0] / 2

 self.rect.centery = self.displaySize[1] / 2

 if self.ballnumber == 2:

 # move to left

 self.vector = (-1, 0)

 else: # ball number 1

 # move to right

 self.vector = (1, 0)

 self.showing = 1

Now insert this one line at the start of the ball Update function. Any ball that is not visible does not

need to be updated:

 def update(self):

 if self.showing == 1: # no update if the ball is hidden

And similarly for the batCollisionTest function:

 def batCollisionTest (self):

 if self.showing == 1: # no collision test needed if the ball is hidden

All that is required now is to show the extra balls when a key is pressed. “B” for ball 2 and “N” for

ball 3. Add this code to the HandleEvents function in the main game class:

 if event.key == K_ESCAPE:

 pygame.quit()

 sys.exit()

 if event.key == K_b: # make ball 2 appear

 self.ball2.show()

 if event.key == K_n: # make ball 3 appear

 self.ball3.show()

