欢迎访问Eurotherm网站
我们发现您可能更喜欢此网站。如果需要,请使用上面的语言下拉列表更改您的选择。
Consequently, they must be designed to operate efficiently and safely whilst responding rapidly to any change in demand. Burner management systems must be equally adaptive. Eurotherm Process Automation provides efficient, well implemented control techniques capable of reducing operating costs whilst providing resources for greater flexibility in plant management and control. Burner combustion control generally includes one or a combination of the following methods:
In actual practice, gas, oil, coal burning and other systems do not do a perfect job of mixing the fuel and air even under the best achievable conditions.
Additionally, complete mixing may be a lengthy process. Figure 1 shows that in order to ensure complete combustion and reduce heat loss, excess air has to be kept within a suitable range.
The regulation of excess air provides:
When a measurement of oxygen in the flue gas is available, the combustion control mechanism can be vastly improved (since the percentage of oxygen in flue is closely related to the amount of excess air) by adding an oxygen trim control module, allowing:
Modulating control is a basic improvement in controlling combustion. A continuous control signal is generated by a controller monitoring the steam or hot water line.
Reductions in steam pressure or hot water temperature lead to an increase in firing rate. The advantages of introducing burner modulation in combustion control include:
A cross-limiting combustion control strategy ensures that there can never be a dangerous ratio of air and fuel within a combustion process. This is implemented by always raising the air flow before allowing the fuel flow to increase, as shown in Figure 2, or by lowering the fuel flow before allowing the air flow to drop.
Figure 3 depicts a simplified control block diagram of the cross-limiting combustion circuit. Combination firing of multiple fuels simultaneously can also be easily accommodated within the scheme.
Cross-limiting combustion control is highly effective and can easily provide the following:
Double cross-limiting combustion control is an enhancement to the above. It is achieved by applying additional dynamic limits to air and fuel setpoints. This translates to having the actual air/fuel ratio maintained within a preset band during and after transition. This method protects against having the demand signal driving the air/fuel ratio too lean, therefore reducing heat loss.
In situations where combustion is not the principal heat source and when several factors contribute to the total heat to be generated by a boiler, a control loop can be introduced in order to monitor and manage the generated heat. This is particularly true for CHP plants, where gas turbines and supplementary firing are used. This type of implementation is shown in Figure 4:
产品选择器